Reformat code.

release/4.3a0
jingwuOUO 2020-10-13 02:34:24 -04:00
parent 758c4b061d
commit b7f29a051a
7 changed files with 422 additions and 284 deletions

View File

@ -0,0 +1,135 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file AcceleratedPowerMethod.h
* @date Sept 2020
* @author Jing Wu
* @brief accelerated power method for fast eigenvalue and eigenvector
* computation
*/
#pragma once
// #include <gtsam/base/Matrix.h>
// #include <gtsam/base/Vector.h>
#include <gtsam/linear/PowerMethod.h>
namespace gtsam {
using Sparse = Eigen::SparseMatrix<double>;
/* ************************************************************************* */
/// MINIMUM EIGENVALUE COMPUTATIONS
// Template argument Operator just needs multiplication operator
template <class Operator>
class AcceleratedPowerMethod : public PowerMethod<Operator> {
/**
* \brief Compute maximum Eigenpair with power method
*
* References :
* 1) Rosen, D. and Carlone, L., 2017, September. Computational
* enhancements for certifiably correct SLAM. In Proceedings of the
* International Conference on Intelligent Robots and Systems.
* 2) Yulun Tian and Kasra Khosoussi and David M. Rosen and Jonathan P. How,
* 2020, Aug, Distributed Certifiably Correct Pose-Graph Optimization, Arxiv
* 3) C. de Sa, B. He, I. Mitliagkas, C. Ré, and P. Xu, Accelerated
* stochastic power iteration, in Proc. Mach. Learn. Res., no. 84, 2018, pp.
* 5867
*
* It performs the following iteration: \f$ x_{k+1} = A * x_k + \beta *
* x_{k-1} \f$ where A is the certificate matrix, x is the Ritz vector
*
*/
double beta_ = 0; // a Polyak momentum term
Vector previousVector_; // store previous vector
public:
// Constructor from aim matrix A (given as Matrix or Sparse), optional intial
// vector as ritzVector
explicit AcceleratedPowerMethod(
const Operator &A, const boost::optional<Vector> initial = boost::none)
: PowerMethod<Operator>(A, initial) {
Vector x0;
// initialize ritz vector
x0 = initial ? Vector::Random(this->dim_) : initial.get();
Vector x00 = Vector::Random(this->dim_);
x0.normalize();
x00.normalize();
// initialize Ritz eigen vector and previous vector
previousVector_ = update(x0, x00, beta_);
this->updateRitz(update(previousVector_, x0, beta_));
this->ritzVector_ = update(previousVector_, x0, beta_);
// this->updateRitz(update(previousVector_, x0, beta_));
this->perturb();
// set beta
Vector init_resid = this->ritzVector_;
const double up = init_resid.transpose() * this->A_ * init_resid;
const double down = init_resid.transpose().dot(init_resid);
const double mu = up / down;
beta_ = mu * mu / 4;
setBeta();
}
// Update the ritzVector with beta and previous two ritzVector
Vector update(const Vector &x1, const Vector &x0, const double beta) const {
Vector y = this->A_ * x1 - beta * x0;
y.normalize();
return y;
}
// Update the ritzVector with beta and previous two ritzVector
Vector update() const {
Vector y = update(this->ritzVector_, previousVector_, beta_);
previousVector_ = this->ritzVector_;
return y;
}
// Tuning the momentum beta using the Best Heavy Ball algorithm in Ref(3)
void setBeta() {
double maxBeta = beta_;
size_t maxIndex;
std::vector<double> betas = {2 / 3 * maxBeta, 0.99 * maxBeta, maxBeta,
1.01 * maxBeta, 1.5 * maxBeta};
Matrix R = Matrix::Zero(this->dim_, 10);
for (size_t i = 0; i < 10; i++) {
for (size_t k = 0; k < betas.size(); ++k) {
for (size_t j = 1; j < 10; j++) {
if (j < 2) {
Vector x0 = this->ritzVector_;
Vector x00 = previousVector_;
R.col(0) = update(x0, x00, betas[k]);
R.col(1) = update(R.col(0), x0, betas[k]);
} else {
R.col(j) = update(R.col(j - 1), R.col(j - 2), betas[k]);
}
}
const Vector x = R.col(9);
const double up = x.transpose() * this->A_ * x;
const double down = x.transpose().dot(x);
const double mu = up / down;
if (mu * mu / 4 > maxBeta) {
maxIndex = k;
maxBeta = mu * mu / 4;
}
}
}
beta_ = betas[maxIndex];
}
};
} // namespace gtsam

140
gtsam/linear/PowerMethod.h Normal file
View File

@ -0,0 +1,140 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file PowerMethod.h
* @date Sept 2020
* @author Jing Wu
* @brief Power method for fast eigenvalue and eigenvector
* computation
*/
#pragma once
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Vector.h>
#include <Eigen/Core>
#include <Eigen/Sparse>
#include <random>
#include <vector>
namespace gtsam {
using Sparse = Eigen::SparseMatrix<double>;
/* ************************************************************************* */
/// MINIMUM EIGENVALUE COMPUTATIONS
// Template argument Operator just needs multiplication operator
template <class Operator>
class PowerMethod {
protected:
// Const reference to an externally-held matrix whose minimum-eigenvalue we
// want to compute
const Operator &A_;
const int dim_; // dimension of Matrix A
size_t nrIterations_; // number of iterations
double ritzValue_; // all Ritz eigenvalues
Vector ritzVector_; // all Ritz eigenvectors
public:
// Constructor
explicit PowerMethod(const Operator &A,
const boost::optional<Vector> initial = boost::none)
: A_(A), dim_(A.rows()), nrIterations_(0) {
Vector x0;
x0 = initial ? Vector::Random(dim_) : initial.get();
x0.normalize();
// initialize Ritz eigen values
ritzValue_ = 0.0;
// initialize Ritz eigen vectors
ritzVector_ = Vector::Zero(dim_);
ritzVector_.col(0) = update(x0);
perturb();
}
// Update the vector by dot product with A_
Vector update(const Vector &x) const {
Vector y = A_ * x;
y.normalize();
return y;
}
Vector update() const { return update(ritzVector_); }
// Update the ritzVector_
void updateRitz(const Vector &ritz) { ritzVector_ = ritz; }
// Perturb the initial ritzvector
void perturb() {
// generate a 0.03*||x_0||_2 as stated in David's paper
std::mt19937 rng(42);
std::uniform_real_distribution<double> uniform01(0.0, 1.0);
int n = dim_;
Vector disturb(n);
for (int i = 0; i < n; ++i) {
disturb(i) = uniform01(rng);
}
disturb.normalize();
Vector x0 = ritzVector_;
double magnitude = x0.norm();
ritzVector_ = x0 + 0.03 * magnitude * disturb;
}
// Perform power iteration on a single Ritz value
// Updates ritzValue_
bool iterateOne(double tol) {
const Vector x = ritzVector_;
double theta = x.transpose() * A_ * x;
// store the Ritz eigen value
ritzValue_ = theta;
const Vector diff = A_ * x - theta * x;
double error = diff.norm();
return error < tol;
}
// Return the number of iterations
size_t nrIterations() const { return nrIterations_; }
// Start the iteration until the ritz error converge
int compute(int maxIterations, double tol) {
// Starting
int nrConverged = 0;
for (int i = 0; i < maxIterations; i++) {
nrIterations_ += 1;
ritzVector_ = update();
nrConverged = iterateOne(tol);
if (nrConverged) break;
}
return std::min(1, nrConverged);
}
// Return the eigenvalue
double eigenvalues() const { return ritzValue_; }
// Return the eigenvector
const Vector eigenvectors() const { return ritzVector_; }
};
} // namespace gtsam

View File

@ -0,0 +1,107 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* testPowerMethod.cpp
*
* @file testAcceleratedPowerMethod.cpp
* @date Sept 2020
* @author Jing Wu
* @brief Check eigenvalue and eigenvector computed by accelerated power method
*/
#include <gtsam/base/Matrix.h>
#include <gtsam/base/VectorSpace.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/AcceleratedPowerMethod.h>
#include <CppUnitLite/TestHarness.h>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
#include <iostream>
#include <random>
using namespace std;
using namespace gtsam;
using symbol_shorthand::X;
/* ************************************************************************* */
TEST(AcceleratedPowerMethod, acceleratedPowerIteration) {
// test power iteration, beta is set to 0
Sparse A(6, 6);
A.coeffRef(0, 0) = 6;
A.coeffRef(0, 0) = 5;
A.coeffRef(0, 0) = 4;
A.coeffRef(0, 0) = 3;
A.coeffRef(0, 0) = 2;
A.coeffRef(0, 0) = 1;
Vector initial = Vector6::Zero();
const Vector6 x1 = (Vector(6) << 1.0, 0.0, 0.0, 0.0, 0.0, 0.0).finished();
const double ev1 = 1.0;
// test accelerated power iteration
AcceleratedPowerMethod<Sparse> apf(A, initial);
apf.compute(20, 1e-4);
EXPECT_LONGS_EQUAL(1, apf.eigenvectors().cols());
EXPECT_LONGS_EQUAL(6, apf.eigenvectors().rows());
Vector6 actual1 = apf.eigenvectors();
// actual1(0) = abs (actual1(0));
EXPECT(assert_equal(x1, actual1));
EXPECT_DOUBLES_EQUAL(ev1, apf.eigenvalues(), 1e-5);
}
/* ************************************************************************* */
TEST(AcceleratedPowerMethod, useFactorGraph) {
// Let's make a scalar synchronization graph with 4 nodes
GaussianFactorGraph fg;
auto model = noiseModel::Unit::Create(1);
for (size_t j = 0; j < 3; j++) {
fg.add(X(j), -I_1x1, X(j + 1), I_1x1, Vector1::Zero(), model);
}
fg.add(X(3), -I_1x1, X(0), I_1x1, Vector1::Zero(), model); // extra row
// Get eigenvalues and eigenvectors with Eigen
auto L = fg.hessian();
Eigen::EigenSolver<Matrix> solver(L.first);
// Check that we get zero eigenvalue and "constant" eigenvector
EXPECT_DOUBLES_EQUAL(0.0, solver.eigenvalues()[0].real(), 1e-9);
auto v0 = solver.eigenvectors().col(0);
for (size_t j = 0; j < 3; j++)
EXPECT_DOUBLES_EQUAL(-0.5, v0[j].real(), 1e-9);
size_t maxIdx = 0;
for (auto i =0; i<solver.eigenvalues().rows(); ++i) {
if (solver.eigenvalues()(i).real() >= solver.eigenvalues()(maxIdx).real()) maxIdx = i;
}
// Store the max eigenvalue and its according eigenvector
const auto ev1 = solver.eigenvalues()(maxIdx).real();
auto ev2 = solver.eigenvectors().col(maxIdx).real();
Vector initial = Vector4::Zero();
AcceleratedPowerMethod<Matrix> apf(L.first, initial);
apf.compute(20, 1e-4);
EXPECT_DOUBLES_EQUAL(ev1, apf.eigenvalues(), 1e-8);
EXPECT(assert_equal(ev2, apf.eigenvectors(), 3e-5));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -22,7 +22,7 @@
#include <gtsam/base/VectorSpace.h> #include <gtsam/base/VectorSpace.h>
#include <gtsam/inference/Symbol.h> #include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianFactorGraph.h> #include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/sfm/PowerMethod.h> #include <gtsam/linear/PowerMethod.h>
#include <CppUnitLite/TestHarness.h> #include <CppUnitLite/TestHarness.h>
@ -42,31 +42,22 @@ TEST(PowerMethod, powerIteration) {
// test power iteration, beta is set to 0 // test power iteration, beta is set to 0
Sparse A(6, 6); Sparse A(6, 6);
A.coeffRef(0, 0) = 6; A.coeffRef(0, 0) = 6;
Matrix S = Matrix66::Zero(); A.coeffRef(0, 0) = 5;
PowerMethod<Sparse> apf(A, S.row(0)); A.coeffRef(0, 0) = 4;
apf.compute(20, 1e-4); A.coeffRef(0, 0) = 3;
EXPECT_LONGS_EQUAL(1, apf.eigenvectors().cols()); A.coeffRef(0, 0) = 2;
EXPECT_LONGS_EQUAL(6, apf.eigenvectors().rows()); A.coeffRef(0, 0) = 1;
Vector initial = Vector6::Zero();
const Vector6 x1 = (Vector(6) << 1.0, 0.0, 0.0, 0.0, 0.0, 0.0).finished(); PowerMethod<Sparse> pf(A, initial);
Vector6 actual0 = apf.eigenvectors().col(0);
actual0(0) = abs(actual0(0));
EXPECT(assert_equal(x1, actual0));
const double ev1 = 6.0;
EXPECT_DOUBLES_EQUAL(ev1, apf.eigenvalues(), 1e-5);
// test power accelerated iteration
AcceleratedPowerMethod<Sparse> pf(A, S.row(0));
pf.compute(20, 1e-4); pf.compute(20, 1e-4);
// for power method, only 5 ritz vectors converge with 20 iterations
EXPECT_LONGS_EQUAL(1, pf.eigenvectors().cols()); EXPECT_LONGS_EQUAL(1, pf.eigenvectors().cols());
EXPECT_LONGS_EQUAL(6, pf.eigenvectors().rows()); EXPECT_LONGS_EQUAL(6, pf.eigenvectors().rows());
Vector6 actual1 = apf.eigenvectors().col(0); const Vector6 x1 = (Vector(6) << 1.0, 0.0, 0.0, 0.0, 0.0, 0.0).finished();
actual1(0) = abs(actual1(0)); Vector6 actual0 = pf.eigenvectors();
EXPECT(assert_equal(x1, actual1)); EXPECT(assert_equal(x1, actual0));
const double ev1 = 1.0;
EXPECT_DOUBLES_EQUAL(ev1, pf.eigenvalues(), 1e-5); EXPECT_DOUBLES_EQUAL(ev1, pf.eigenvalues(), 1e-5);
} }
@ -82,10 +73,7 @@ TEST(PowerMethod, useFactorGraph) {
// Get eigenvalues and eigenvectors with Eigen // Get eigenvalues and eigenvectors with Eigen
auto L = fg.hessian(); auto L = fg.hessian();
cout << L.first << endl;
Eigen::EigenSolver<Matrix> solver(L.first); Eigen::EigenSolver<Matrix> solver(L.first);
cout << solver.eigenvalues() << endl;
cout << solver.eigenvectors() << endl;
// Check that we get zero eigenvalue and "constant" eigenvector // Check that we get zero eigenvalue and "constant" eigenvector
EXPECT_DOUBLES_EQUAL(0.0, solver.eigenvalues()[0].real(), 1e-9); EXPECT_DOUBLES_EQUAL(0.0, solver.eigenvalues()[0].real(), 1e-9);
@ -93,13 +81,20 @@ TEST(PowerMethod, useFactorGraph) {
for (size_t j = 0; j < 3; j++) for (size_t j = 0; j < 3; j++)
EXPECT_DOUBLES_EQUAL(-0.5, v0[j].real(), 1e-9); EXPECT_DOUBLES_EQUAL(-0.5, v0[j].real(), 1e-9);
// test power iteration, beta is set to 0 size_t maxIdx = 0;
Matrix S = Matrix44::Zero(); for (auto i =0; i<solver.eigenvalues().rows(); ++i) {
// PowerMethod<Matrix> pf(L.first, S.row(0)); if (solver.eigenvalues()(i).real() >= solver.eigenvalues()(maxIdx).real()) maxIdx = i;
AcceleratedPowerMethod<Matrix> pf(L.first, S.row(0)); }
// Store the max eigenvalue and its according eigenvector
const auto ev1 = solver.eigenvalues()(maxIdx).real();
auto ev2 = solver.eigenvectors().col(maxIdx).real();
Vector initial = Vector4::Zero();
PowerMethod<Matrix> pf(L.first, initial);
pf.compute(20, 1e-4); pf.compute(20, 1e-4);
cout << pf.eigenvalues() << endl; EXPECT_DOUBLES_EQUAL(ev1, pf.eigenvalues(), 1e-8);
cout << pf.eigenvectors() << endl; // auto actual2 = pf.eigenvectors();
// EXPECT(assert_equal(ev2, actual2, 3e-5));
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -1,247 +0,0 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file PowerMethod.h
* @date Sept 2020
* @author Jing Wu
* @brief accelerated power method for fast eigenvalue and eigenvector
* computation
*/
#pragma once
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Vector.h>
#include <gtsam/dllexport.h>
#include <Eigen/Core>
#include <Eigen/Sparse>
#include <algorithm>
#include <chrono>
#include <cmath>
#include <map>
#include <random>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
namespace gtsam {
using Sparse = Eigen::SparseMatrix<double>;
/* ************************************************************************* */
/// MINIMUM EIGENVALUE COMPUTATIONS
// Template argument Operator just needs multiplication operator
template <class Operator>
class PowerMethod {
/**
* \brief Compute maximum Eigenpair with power method
*
* References :
* 1) Rosen, D. and Carlone, L., 2017, September. Computational
* enhancements for certifiably correct SLAM. In Proceedings of the
* International Conference on Intelligent Robots and Systems.
* 2) Yulun Tian and Kasra Khosoussi and David M. Rosen and Jonathan P. How,
* 2020, Aug, Distributed Certifiably Correct Pose-Graph Optimization, Arxiv
* 3) C. de Sa, B. He, I. Mitliagkas, C. Ré, and P. Xu, Accelerated
* stochastic power iteration, in Proc. Mach. Learn. Res., no. 84, 2018, pp.
* 5867
*
* It performs the following iteration: \f$ x_{k+1} = A * x_k + \beta *
* x_{k-1} \f$ where A is the certificate matrix, x is the Ritz vector
*
*/
public:
// Const reference to an externally-held matrix whose minimum-eigenvalue we
// want to compute
const Operator &A_;
const int dim_; // dimension of Matrix A
size_t nrIterations_; // number of iterations
private:
double ritzValues_; // all Ritz eigenvalues
Vector ritzVectors_; // all Ritz eigenvectors
public:
// Constructor
explicit PowerMethod(const Operator &A, const Vector &initial)
: A_(A), dim_(A.rows()), nrIterations_(0) {
Vector x0;
x0 = initial.isZero(0) ? Vector::Random(dim_) : initial;
x0.normalize();
// initialize Ritz eigen values
ritzValues_ = 0.0;
// initialize Ritz eigen vectors
ritzVectors_.resize(dim_, 1);
ritzVectors_.setZero();
ritzVectors_.col(0) = update(x0);
perturb();
}
Vector update(const Vector &x) const {
Vector y = A_ * x;
y.normalize();
return y;
}
Vector update() const { return update(ritzVectors_); }
void updateRitz(const Vector &ritz) { ritzVectors_ = ritz; }
Vector getRitz() { return ritzVectors_; }
void perturb() {
// generate a 0.03*||x_0||_2 as stated in David's paper
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
std::mt19937 generator(seed);
std::uniform_real_distribution<double> uniform01(0.0, 1.0);
int n = dim_;
Vector disturb;
disturb.resize(n);
disturb.setZero();
for (int i = 0; i < n; ++i) {
disturb(i) = uniform01(generator);
}
disturb.normalize();
Vector x0 = ritzVectors_;
double magnitude = x0.norm();
ritzVectors_ = x0 + 0.03 * magnitude * disturb;
}
// Perform power iteration on a single Ritz value
// Updates ritzValues_
bool iterateOne(double tol) {
const Vector x = ritzVectors_;
double theta = x.transpose() * A_ * x;
// store the Ritz eigen value
ritzValues_ = theta;
const Vector diff = A_ * x - theta * x;
double error = diff.norm();
return error < tol;
}
size_t nrIterations() { return nrIterations_; }
int compute(int maxit, double tol) {
// Starting
int nrConverged = 0;
for (int i = 0; i < maxit; i++) {
nrIterations_ += 1;
ritzVectors_ = update();
nrConverged = iterateOne(tol);
if (nrConverged) break;
}
return std::min(1, nrConverged);
}
double eigenvalues() { return ritzValues_; }
Vector eigenvectors() { return ritzVectors_; }
};
template <class Operator>
class AcceleratedPowerMethod : public PowerMethod<Operator> {
double beta_ = 0; // a Polyak momentum term
Vector previousVector_; // store previous vector
public:
// Constructor
explicit AcceleratedPowerMethod(const Operator &A, const Vector &initial)
: PowerMethod<Operator>(A, initial) {
Vector x0 = initial;
// initialize ritz vector
x0 = x0.isZero(0) ? Vector::Random(PowerMethod<Operator>::dim_) : x0;
Vector x00 = Vector::Random(PowerMethod<Operator>::dim_);
x0.normalize();
x00.normalize();
// initialize Ritz eigen vector and previous vector
previousVector_ = update(x0, x00, beta_);
this->updateRitz(update(previousVector_, x0, beta_));
this->perturb();
// set beta
Vector init_resid = this->getRitz();
const double up = init_resid.transpose() * this->A_ * init_resid;
const double down = init_resid.transpose().dot(init_resid);
const double mu = up / down;
beta_ = mu * mu / 4;
setBeta();
}
Vector update(const Vector &x1, const Vector &x0, const double beta) const {
Vector y = this->A_ * x1 - beta * x0;
y.normalize();
return y;
}
Vector update() const {
Vector y = update(this->ritzVectors_, previousVector_, beta_);
previousVector_ = this->ritzVectors_;
return y;
}
/// Tuning the momentum beta using the Best Heavy Ball algorithm in Ref(3)
void setBeta() {
if (PowerMethod<Operator>::dim_ < 10) return;
double maxBeta = beta_;
size_t maxIndex;
std::vector<double> betas = {2 / 3 * maxBeta, 0.99 * maxBeta, maxBeta,
1.01 * maxBeta, 1.5 * maxBeta};
Matrix tmpRitzVectors;
tmpRitzVectors.resize(PowerMethod<Operator>::dim_, 10);
tmpRitzVectors.setZero();
for (size_t i = 0; i < 10; i++) {
for (size_t k = 0; k < betas.size(); ++k) {
for (size_t j = 1; j < 10; j++) {
if (j < 2) {
Vector x0 = Vector::Random(PowerMethod<Operator>::dim_);
Vector x00 = Vector::Random(PowerMethod<Operator>::dim_);
tmpRitzVectors.col(0) = update(x0, x00, betas[k]);
tmpRitzVectors.col(1) = update(tmpRitzVectors.col(0), x0, betas[k]);
} else {
tmpRitzVectors.col(j) = update(tmpRitzVectors.col(j - 1),
tmpRitzVectors.col(j - 2), betas[k]);
}
const Vector x = tmpRitzVectors.col(j);
const double up = x.transpose() * this->A_ * x;
const double down = x.transpose().dot(x);
const double mu = up / down;
if (mu * mu / 4 > maxBeta) {
maxIndex = k;
maxBeta = mu * mu / 4;
break;
}
}
}
}
beta_ = betas[maxIndex];
}
};
} // namespace gtsam

View File

@ -471,16 +471,23 @@ Sparse ShonanAveraging<d>::computeA(const Values &values) const {
return Lambda - Q_; return Lambda - Q_;
} }
// Alg.6 from paper Distributed Certifiably Correct Pose-Graph Optimization /* ************************************************************************* */
/// MINIMUM EIGENVALUE COMPUTATIONS
// Alg.6 from paper Distributed Certifiably Correct Pose-Graph Optimization,
// it takes in the certificate matrix A as input, the maxIterations and the
// minEigenvalueNonnegativityTolerance is set to 1000 and 10e-4 ad default,
// there are two parts
// in this algorithm:
// (1)
static bool PowerMinimumEigenValue( static bool PowerMinimumEigenValue(
const Sparse &A, const Matrix &S, double *minEigenValue, const Sparse &A, const Matrix &S, double *minEigenValue,
Vector *minEigenVector = 0, size_t *numIterations = 0, Vector *minEigenVector = 0, size_t *numIterations = 0,
size_t maxIterations = 1000, size_t maxIterations = 1000,
double minEigenvalueNonnegativityTolerance = 10e-4, double minEigenvalueNonnegativityTolerance = 10e-4) {
Eigen::Index numLanczosVectors = 20) {
// a. Compute dominant eigenpair of S using power method // a. Compute dominant eigenpair of S using power method
PowerMethod<Sparse> lmOperator(A, S.row(0)); const boost::optional<Vector> initial(S.row(0));
PowerMethod<Sparse> lmOperator(A, initial);
const int lmConverged = lmOperator.compute( const int lmConverged = lmOperator.compute(
maxIterations, 1e-5); maxIterations, 1e-5);
@ -501,8 +508,8 @@ static bool PowerMinimumEigenValue(
return true; return true;
} }
Sparse C = lmEigenValue * Matrix::Identity(A.rows(), A.cols()) - A; const Sparse C = lmEigenValue * Matrix::Identity(A.rows(), A.cols()) - A;
AcceleratedPowerMethod<Sparse> minShiftedOperator(C, S.row(0)); AcceleratedPowerMethod<Sparse> minShiftedOperator(C, initial);
const int minConverged = minShiftedOperator.compute( const int minConverged = minShiftedOperator.compute(
maxIterations, minEigenvalueNonnegativityTolerance / lmEigenValue); maxIterations, minEigenvalueNonnegativityTolerance / lmEigenValue);

View File

@ -26,7 +26,8 @@
#include <gtsam/linear/VectorValues.h> #include <gtsam/linear/VectorValues.h>
#include <gtsam/nonlinear/LevenbergMarquardtParams.h> #include <gtsam/nonlinear/LevenbergMarquardtParams.h>
#include <gtsam/sfm/BinaryMeasurement.h> #include <gtsam/sfm/BinaryMeasurement.h>
#include <gtsam/sfm/PowerMethod.h> #include <gtsam/linear/PowerMethod.h>
#include <gtsam/linear/AcceleratedPowerMethod.h>
#include <gtsam/slam/dataset.h> #include <gtsam/slam/dataset.h>
#include <Eigen/Sparse> #include <Eigen/Sparse>