Revert "enumerate all assignments for computing probabilities to prune"
This reverts commit 8c38e45c83
.
release/4.3a0
parent
2db08281c6
commit
b7deefd744
|
@ -306,12 +306,11 @@ namespace gtsam {
|
|||
|
||||
// Get the probabilities in the decision tree so we can threshold.
|
||||
std::vector<double> probabilities;
|
||||
// NOTE(Varun) this is potentially slow due to the cartesian product
|
||||
auto allValues = DiscreteValues::CartesianProduct(this->discreteKeys());
|
||||
for (auto&& val : allValues) {
|
||||
double prob = (*this)(val);
|
||||
probabilities.push_back(prob);
|
||||
}
|
||||
this->visitLeaf([&](const Leaf& leaf) {
|
||||
const size_t nrAssignments = leaf.nrAssignments();
|
||||
double prob = leaf.constant();
|
||||
probabilities.insert(probabilities.end(), nrAssignments, prob);
|
||||
});
|
||||
|
||||
// The number of probabilities can be lower than max_leaves
|
||||
if (probabilities.size() <= N) {
|
||||
|
|
|
@ -108,7 +108,7 @@ TEST(GaussianMixtureFactor, Printing) {
|
|||
std::string expected =
|
||||
R"(Hybrid [x1 x2; 1]{
|
||||
Choice(1)
|
||||
0 Leaf :
|
||||
0 Leaf [1]:
|
||||
A[x1] = [
|
||||
0;
|
||||
0
|
||||
|
@ -120,7 +120,7 @@ TEST(GaussianMixtureFactor, Printing) {
|
|||
b = [ 0 0 ]
|
||||
No noise model
|
||||
|
||||
1 Leaf :
|
||||
1 Leaf [1]:
|
||||
A[x1] = [
|
||||
0;
|
||||
0
|
||||
|
|
|
@ -493,7 +493,7 @@ factor 0:
|
|||
factor 1:
|
||||
Hybrid [x0 x1; m0]{
|
||||
Choice(m0)
|
||||
0 Leaf :
|
||||
0 Leaf [1]:
|
||||
A[x0] = [
|
||||
-1
|
||||
]
|
||||
|
@ -503,7 +503,7 @@ Hybrid [x0 x1; m0]{
|
|||
b = [ -1 ]
|
||||
No noise model
|
||||
|
||||
1 Leaf :
|
||||
1 Leaf [1]:
|
||||
A[x0] = [
|
||||
-1
|
||||
]
|
||||
|
@ -517,7 +517,7 @@ Hybrid [x0 x1; m0]{
|
|||
factor 2:
|
||||
Hybrid [x1 x2; m1]{
|
||||
Choice(m1)
|
||||
0 Leaf :
|
||||
0 Leaf [1]:
|
||||
A[x1] = [
|
||||
-1
|
||||
]
|
||||
|
@ -527,7 +527,7 @@ Hybrid [x1 x2; m1]{
|
|||
b = [ -1 ]
|
||||
No noise model
|
||||
|
||||
1 Leaf :
|
||||
1 Leaf [1]:
|
||||
A[x1] = [
|
||||
-1
|
||||
]
|
||||
|
@ -551,16 +551,16 @@ factor 4:
|
|||
b = [ -10 ]
|
||||
No noise model
|
||||
factor 5: P( m0 ):
|
||||
Leaf 0.5
|
||||
Leaf [2] 0.5
|
||||
|
||||
factor 6: P( m1 | m0 ):
|
||||
Choice(m1)
|
||||
0 Choice(m0)
|
||||
0 0 Leaf 0.33333333
|
||||
0 1 Leaf 0.6
|
||||
0 0 Leaf [1]0.33333333
|
||||
0 1 Leaf [1] 0.6
|
||||
1 Choice(m0)
|
||||
1 0 Leaf 0.66666667
|
||||
1 1 Leaf 0.4
|
||||
1 0 Leaf [1]0.66666667
|
||||
1 1 Leaf [1] 0.4
|
||||
|
||||
)";
|
||||
#else
|
||||
|
@ -575,7 +575,7 @@ factor 0:
|
|||
factor 1:
|
||||
Hybrid [x0 x1; m0]{
|
||||
Choice(m0)
|
||||
0 Leaf :
|
||||
0 Leaf [1]:
|
||||
A[x0] = [
|
||||
-1
|
||||
]
|
||||
|
@ -585,7 +585,7 @@ Hybrid [x0 x1; m0]{
|
|||
b = [ -1 ]
|
||||
No noise model
|
||||
|
||||
1 Leaf :
|
||||
1 Leaf [1]:
|
||||
A[x0] = [
|
||||
-1
|
||||
]
|
||||
|
@ -599,7 +599,7 @@ Hybrid [x0 x1; m0]{
|
|||
factor 2:
|
||||
Hybrid [x1 x2; m1]{
|
||||
Choice(m1)
|
||||
0 Leaf :
|
||||
0 Leaf [1]:
|
||||
A[x1] = [
|
||||
-1
|
||||
]
|
||||
|
@ -609,7 +609,7 @@ Hybrid [x1 x2; m1]{
|
|||
b = [ -1 ]
|
||||
No noise model
|
||||
|
||||
1 Leaf :
|
||||
1 Leaf [1]:
|
||||
A[x1] = [
|
||||
-1
|
||||
]
|
||||
|
@ -634,17 +634,17 @@ factor 4:
|
|||
No noise model
|
||||
factor 5: P( m0 ):
|
||||
Choice(m0)
|
||||
0 Leaf 0.5
|
||||
1 Leaf 0.5
|
||||
0 Leaf [1] 0.5
|
||||
1 Leaf [1] 0.5
|
||||
|
||||
factor 6: P( m1 | m0 ):
|
||||
Choice(m1)
|
||||
0 Choice(m0)
|
||||
0 0 Leaf 0.33333333
|
||||
0 1 Leaf 0.6
|
||||
0 0 Leaf [1]0.33333333
|
||||
0 1 Leaf [1] 0.6
|
||||
1 Choice(m0)
|
||||
1 0 Leaf 0.66666667
|
||||
1 1 Leaf 0.4
|
||||
1 0 Leaf [1]0.66666667
|
||||
1 1 Leaf [1] 0.4
|
||||
|
||||
)";
|
||||
#endif
|
||||
|
@ -657,13 +657,13 @@ size: 3
|
|||
conditional 0: Hybrid P( x0 | x1 m0)
|
||||
Discrete Keys = (m0, 2),
|
||||
Choice(m0)
|
||||
0 Leaf p(x0 | x1)
|
||||
0 Leaf [1] p(x0 | x1)
|
||||
R = [ 10.0499 ]
|
||||
S[x1] = [ -0.0995037 ]
|
||||
d = [ -9.85087 ]
|
||||
No noise model
|
||||
|
||||
1 Leaf p(x0 | x1)
|
||||
1 Leaf [1] p(x0 | x1)
|
||||
R = [ 10.0499 ]
|
||||
S[x1] = [ -0.0995037 ]
|
||||
d = [ -9.95037 ]
|
||||
|
@ -673,26 +673,26 @@ conditional 1: Hybrid P( x1 | x2 m0 m1)
|
|||
Discrete Keys = (m0, 2), (m1, 2),
|
||||
Choice(m1)
|
||||
0 Choice(m0)
|
||||
0 0 Leaf p(x1 | x2)
|
||||
0 0 Leaf [1] p(x1 | x2)
|
||||
R = [ 10.099 ]
|
||||
S[x2] = [ -0.0990196 ]
|
||||
d = [ -9.99901 ]
|
||||
No noise model
|
||||
|
||||
0 1 Leaf p(x1 | x2)
|
||||
0 1 Leaf [1] p(x1 | x2)
|
||||
R = [ 10.099 ]
|
||||
S[x2] = [ -0.0990196 ]
|
||||
d = [ -9.90098 ]
|
||||
No noise model
|
||||
|
||||
1 Choice(m0)
|
||||
1 0 Leaf p(x1 | x2)
|
||||
1 0 Leaf [1] p(x1 | x2)
|
||||
R = [ 10.099 ]
|
||||
S[x2] = [ -0.0990196 ]
|
||||
d = [ -10.098 ]
|
||||
No noise model
|
||||
|
||||
1 1 Leaf p(x1 | x2)
|
||||
1 1 Leaf [1] p(x1 | x2)
|
||||
R = [ 10.099 ]
|
||||
S[x2] = [ -0.0990196 ]
|
||||
d = [ -10 ]
|
||||
|
@ -702,14 +702,14 @@ conditional 2: Hybrid P( x2 | m0 m1)
|
|||
Discrete Keys = (m0, 2), (m1, 2),
|
||||
Choice(m1)
|
||||
0 Choice(m0)
|
||||
0 0 Leaf p(x2)
|
||||
0 0 Leaf [1] p(x2)
|
||||
R = [ 10.0494 ]
|
||||
d = [ -10.1489 ]
|
||||
mean: 1 elements
|
||||
x2: -1.0099
|
||||
No noise model
|
||||
|
||||
0 1 Leaf p(x2)
|
||||
0 1 Leaf [1] p(x2)
|
||||
R = [ 10.0494 ]
|
||||
d = [ -10.1479 ]
|
||||
mean: 1 elements
|
||||
|
@ -717,14 +717,14 @@ conditional 2: Hybrid P( x2 | m0 m1)
|
|||
No noise model
|
||||
|
||||
1 Choice(m0)
|
||||
1 0 Leaf p(x2)
|
||||
1 0 Leaf [1] p(x2)
|
||||
R = [ 10.0494 ]
|
||||
d = [ -10.0504 ]
|
||||
mean: 1 elements
|
||||
x2: -1.0001
|
||||
No noise model
|
||||
|
||||
1 1 Leaf p(x2)
|
||||
1 1 Leaf [1] p(x2)
|
||||
R = [ 10.0494 ]
|
||||
d = [ -10.0494 ]
|
||||
mean: 1 elements
|
||||
|
|
|
@ -63,8 +63,8 @@ TEST(MixtureFactor, Printing) {
|
|||
R"(Hybrid [x1 x2; 1]
|
||||
MixtureFactor
|
||||
Choice(1)
|
||||
0 Leaf Nonlinear factor on 2 keys
|
||||
1 Leaf Nonlinear factor on 2 keys
|
||||
0 Leaf [1] Nonlinear factor on 2 keys
|
||||
1 Leaf [1] Nonlinear factor on 2 keys
|
||||
)";
|
||||
EXPECT(assert_print_equal(expected, mixtureFactor));
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue