Merge remote-tracking branch 'origin/RSS_ImuFactor' into feature/scenarios
commit
b7701f0cf6
|
@ -0,0 +1,95 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
* See LICENSE for the license information
|
||||||
|
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file ScenarioRunner.h
|
||||||
|
* @brief Simple class to test navigation scenarios
|
||||||
|
* @author Frank Dellaert
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <gtsam/navigation/ScenarioRunner.h>
|
||||||
|
#include <gtsam/linear/Sampler.h>
|
||||||
|
|
||||||
|
#include <cmath>
|
||||||
|
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
static double intNoiseVar = 0.0000001;
|
||||||
|
static const Matrix3 kIntegrationErrorCovariance = intNoiseVar * I_3x3;
|
||||||
|
|
||||||
|
ImuFactor::PreintegratedMeasurements ScenarioRunner::integrate(
|
||||||
|
double T, Sampler* gyroSampler, Sampler* accSampler) const {
|
||||||
|
// TODO(frank): allow non-zero
|
||||||
|
const imuBias::ConstantBias zeroBias;
|
||||||
|
const bool use2ndOrderIntegration = true;
|
||||||
|
|
||||||
|
ImuFactor::PreintegratedMeasurements pim(
|
||||||
|
zeroBias, accCovariance(), gyroCovariance(), kIntegrationErrorCovariance,
|
||||||
|
use2ndOrderIntegration);
|
||||||
|
|
||||||
|
const double dt = imuSampleTime();
|
||||||
|
const double sqrt_dt = std::sqrt(dt);
|
||||||
|
const size_t nrSteps = T / dt;
|
||||||
|
double t = 0;
|
||||||
|
for (size_t k = 0; k < nrSteps; k++, t += dt) {
|
||||||
|
Rot3 bRn = scenario_->rotation(t).transpose();
|
||||||
|
Vector3 measuredOmega = scenario_->omega_b(t);
|
||||||
|
if (gyroSampler) measuredOmega += gyroSampler->sample() / sqrt_dt;
|
||||||
|
Vector3 measuredAcc = scenario_->acceleration_b(t) - bRn * gravity_n();
|
||||||
|
if (accSampler) measuredAcc += accSampler->sample() / sqrt_dt;
|
||||||
|
pim.integrateMeasurement(measuredAcc, measuredOmega, dt);
|
||||||
|
}
|
||||||
|
|
||||||
|
return pim;
|
||||||
|
}
|
||||||
|
|
||||||
|
PoseVelocityBias ScenarioRunner::predict(
|
||||||
|
const ImuFactor::PreintegratedMeasurements& pim) const {
|
||||||
|
// TODO(frank): allow non-zero bias, omegaCoriolis
|
||||||
|
const imuBias::ConstantBias zeroBias;
|
||||||
|
const Vector3 omegaCoriolis = Vector3::Zero();
|
||||||
|
const bool use2ndOrderCoriolis = true;
|
||||||
|
return pim.predict(scenario_->pose(0), scenario_->velocity_n(0), zeroBias,
|
||||||
|
gravity_n(), omegaCoriolis, use2ndOrderCoriolis);
|
||||||
|
}
|
||||||
|
|
||||||
|
Matrix6 ScenarioRunner::estimatePoseCovariance(double T, size_t N) const {
|
||||||
|
// Get predict prediction from ground truth measurements
|
||||||
|
Pose3 prediction = predict(integrate(T)).pose;
|
||||||
|
|
||||||
|
// Create two samplers for acceleration and omega noise
|
||||||
|
Sampler gyroSampler(gyroNoiseModel(), 10);
|
||||||
|
Sampler accSampler(accNoiseModel(), 29284);
|
||||||
|
|
||||||
|
// Sample !
|
||||||
|
Matrix samples(9, N);
|
||||||
|
Vector6 sum = Vector6::Zero();
|
||||||
|
for (size_t i = 0; i < N; i++) {
|
||||||
|
Pose3 sampled = predict(integrate(T, &gyroSampler, &accSampler)).pose;
|
||||||
|
Vector6 xi = sampled.localCoordinates(prediction);
|
||||||
|
samples.col(i) = xi;
|
||||||
|
sum += xi;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compute MC covariance
|
||||||
|
Vector6 sampleMean = sum / N;
|
||||||
|
Matrix6 Q;
|
||||||
|
Q.setZero();
|
||||||
|
for (size_t i = 0; i < N; i++) {
|
||||||
|
Vector6 xi = samples.col(i);
|
||||||
|
xi -= sampleMean;
|
||||||
|
Q += xi * xi.transpose();
|
||||||
|
}
|
||||||
|
|
||||||
|
return Q / (N - 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace gtsam
|
|
@ -16,16 +16,12 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
#include <gtsam/linear/Sampler.h>
|
|
||||||
#include <gtsam/navigation/ImuFactor.h>
|
#include <gtsam/navigation/ImuFactor.h>
|
||||||
#include <gtsam/navigation/Scenario.h>
|
#include <gtsam/navigation/Scenario.h>
|
||||||
|
|
||||||
#include <cmath>
|
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
static double intNoiseVar = 0.0000001;
|
class Sampler;
|
||||||
static const Matrix3 kIntegrationErrorCovariance = intNoiseVar * I_3x3;
|
|
||||||
|
|
||||||
/// Simple class to test navigation scenarios
|
/// Simple class to test navigation scenarios
|
||||||
class ScenarioRunner {
|
class ScenarioRunner {
|
||||||
|
@ -55,42 +51,13 @@ class ScenarioRunner {
|
||||||
Matrix3 accCovariance() const { return accNoiseModel_->covariance(); }
|
Matrix3 accCovariance() const { return accNoiseModel_->covariance(); }
|
||||||
|
|
||||||
/// Integrate measurements for T seconds into a PIM
|
/// Integrate measurements for T seconds into a PIM
|
||||||
ImuFactor::PreintegratedMeasurements integrate(
|
ImuFactor::PreintegratedMeasurements integrate(double T,
|
||||||
double T, Sampler* gyroSampler = 0, Sampler* accSampler = 0) const {
|
Sampler* gyroSampler = 0,
|
||||||
// TODO(frank): allow non-zero
|
Sampler* accSampler = 0) const;
|
||||||
const imuBias::ConstantBias zeroBias;
|
|
||||||
const bool use2ndOrderIntegration = true;
|
|
||||||
|
|
||||||
ImuFactor::PreintegratedMeasurements pim(
|
|
||||||
zeroBias, accCovariance(), gyroCovariance(),
|
|
||||||
kIntegrationErrorCovariance, use2ndOrderIntegration);
|
|
||||||
|
|
||||||
const double dt = imuSampleTime();
|
|
||||||
const double sqrt_dt = std::sqrt(dt);
|
|
||||||
const size_t nrSteps = T / dt;
|
|
||||||
double t = 0;
|
|
||||||
for (size_t k = 0; k < nrSteps; k++, t += dt) {
|
|
||||||
Rot3 bRn = scenario_->rotation(t).transpose();
|
|
||||||
Vector3 measuredOmega = scenario_->omega_b(t);
|
|
||||||
if (gyroSampler) measuredOmega += gyroSampler->sample() / sqrt_dt;
|
|
||||||
Vector3 measuredAcc = scenario_->acceleration_b(t) - bRn * gravity_n();
|
|
||||||
if (accSampler) measuredAcc += accSampler->sample() / sqrt_dt;
|
|
||||||
pim.integrateMeasurement(measuredAcc, measuredOmega, dt);
|
|
||||||
}
|
|
||||||
|
|
||||||
return pim;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Predict predict given a PIM
|
/// Predict predict given a PIM
|
||||||
PoseVelocityBias predict(
|
PoseVelocityBias predict(
|
||||||
const ImuFactor::PreintegratedMeasurements& pim) const {
|
const ImuFactor::PreintegratedMeasurements& pim) const;
|
||||||
// TODO(frank): allow non-zero bias, omegaCoriolis
|
|
||||||
const imuBias::ConstantBias zeroBias;
|
|
||||||
const Vector3 omegaCoriolis = Vector3::Zero();
|
|
||||||
const bool use2ndOrderCoriolis = true;
|
|
||||||
return pim.predict(scenario_->pose(0), scenario_->velocity_n(0), zeroBias,
|
|
||||||
gravity_n(), omegaCoriolis, use2ndOrderCoriolis);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Return pose covariance by re-arranging pim.preintMeasCov() appropriately
|
/// Return pose covariance by re-arranging pim.preintMeasCov() appropriately
|
||||||
Matrix6 poseCovariance(
|
Matrix6 poseCovariance(
|
||||||
|
@ -103,36 +70,7 @@ class ScenarioRunner {
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Compute a Monte Carlo estimate of the PIM pose covariance using N samples
|
/// Compute a Monte Carlo estimate of the PIM pose covariance using N samples
|
||||||
Matrix6 estimatePoseCovariance(double T, size_t N = 1000) const {
|
Matrix6 estimatePoseCovariance(double T, size_t N = 100) const;
|
||||||
// Get predict prediction from ground truth measurements
|
|
||||||
Pose3 prediction = predict(integrate(T)).pose;
|
|
||||||
|
|
||||||
// Create two samplers for acceleration and omega noise
|
|
||||||
Sampler gyroSampler(gyroNoiseModel(), 10);
|
|
||||||
Sampler accSampler(accNoiseModel(), 29284);
|
|
||||||
|
|
||||||
// Sample !
|
|
||||||
Matrix samples(9, N);
|
|
||||||
Vector6 sum = Vector6::Zero();
|
|
||||||
for (size_t i = 0; i < N; i++) {
|
|
||||||
Pose3 sampled = predict(integrate(T, &gyroSampler, &accSampler)).pose;
|
|
||||||
Vector6 xi = sampled.localCoordinates(prediction);
|
|
||||||
samples.col(i) = xi;
|
|
||||||
sum += xi;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute MC covariance
|
|
||||||
Vector6 sampleMean = sum / N;
|
|
||||||
Matrix6 Q;
|
|
||||||
Q.setZero();
|
|
||||||
for (size_t i = 0; i < N; i++) {
|
|
||||||
Vector6 xi = samples.col(i);
|
|
||||||
xi -= sampleMean;
|
|
||||||
Q += xi * xi.transpose();
|
|
||||||
}
|
|
||||||
|
|
||||||
return Q / (N - 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
private:
|
||||||
const Scenario* scenario_;
|
const Scenario* scenario_;
|
||||||
|
|
Loading…
Reference in New Issue