Merged in feature/AHRSFactor (pull request #36)

AHRS, Range and Drone Dynamics Factors
release/4.3a0
Krunal Chande 2014-11-22 18:10:02 -05:00
commit b70528cca7
14 changed files with 1557 additions and 354 deletions

118
.cproject
View File

@ -21,7 +21,7 @@
<folderInfo id="cdt.managedbuild.toolchain.gnu.macosx.base.1359703544.2031210194" name="/" resourcePath="">
<toolChain id="cdt.managedbuild.toolchain.gnu.macosx.base.677243255" name="cdt.managedbuild.toolchain.gnu.macosx.base" superClass="cdt.managedbuild.toolchain.gnu.macosx.base">
<targetPlatform archList="all" binaryParser="org.eclipse.cdt.core.ELF;org.eclipse.cdt.core.MachO64" id="cdt.managedbuild.target.gnu.platform.macosx.base.752782918" name="Debug Platform" osList="macosx" superClass="cdt.managedbuild.target.gnu.platform.macosx.base"/>
<builder arguments="" buildPath="${ProjDirPath}/build" command="make" id="cdt.managedbuild.target.gnu.builder.macosx.base.319933862" keepEnvironmentInBuildfile="false" managedBuildOn="false" name="Gnu Make Builder" parallelBuildOn="true" parallelizationNumber="5" superClass="cdt.managedbuild.target.gnu.builder.macosx.base"/>
<builder arguments="-j8" buildPath="${ProjDirPath}/build" command="make" id="cdt.managedbuild.target.gnu.builder.macosx.base.319933862" keepEnvironmentInBuildfile="false" managedBuildOn="false" name="Gnu Make Builder" parallelBuildOn="true" parallelizationNumber="optimal" superClass="cdt.managedbuild.target.gnu.builder.macosx.base"/>
<tool id="cdt.managedbuild.tool.macosx.c.linker.macosx.base.457360678" name="MacOS X C Linker" superClass="cdt.managedbuild.tool.macosx.c.linker.macosx.base"/>
<tool id="cdt.managedbuild.tool.macosx.cpp.linker.macosx.base.1011140787" name="MacOS X C++ Linker" superClass="cdt.managedbuild.tool.macosx.cpp.linker.macosx.base">
<option id="macosx.cpp.link.option.paths.451252615" name="Library search path (-L)" superClass="macosx.cpp.link.option.paths"/>
@ -132,7 +132,7 @@
<folderInfo id="cdt.managedbuild.toolchain.gnu.macosx.base.1359703544.127261216." name="/" resourcePath="">
<toolChain id="cdt.managedbuild.toolchain.gnu.macosx.base.1052998998" name="cdt.managedbuild.toolchain.gnu.macosx.base" superClass="cdt.managedbuild.toolchain.gnu.macosx.base">
<targetPlatform archList="all" binaryParser="org.eclipse.cdt.core.ELF;org.eclipse.cdt.core.MachO64" id="cdt.managedbuild.target.gnu.platform.macosx.base.1735323246" name="Debug Platform" osList="macosx" superClass="cdt.managedbuild.target.gnu.platform.macosx.base"/>
<builder arguments="" buildPath="${workspace_loc:/gtsam/build-fast}" command="make" id="cdt.managedbuild.target.gnu.builder.macosx.base.1127775962" keepEnvironmentInBuildfile="false" managedBuildOn="false" name="Gnu Make Builder" parallelBuildOn="true" parallelizationNumber="5" superClass="cdt.managedbuild.target.gnu.builder.macosx.base"/>
<builder arguments="" buildPath="${workspace_loc:/gtsam/build-fast}" command="make" id="cdt.managedbuild.target.gnu.builder.macosx.base.1127775962" keepEnvironmentInBuildfile="false" managedBuildOn="false" name="Gnu Make Builder" parallelBuildOn="true" parallelizationNumber="optimal" superClass="cdt.managedbuild.target.gnu.builder.macosx.base"/>
<tool id="cdt.managedbuild.tool.macosx.c.linker.macosx.base.1922513433" name="MacOS X C Linker" superClass="cdt.managedbuild.tool.macosx.c.linker.macosx.base"/>
<tool id="cdt.managedbuild.tool.macosx.cpp.linker.macosx.base.1097733515" name="MacOS X C++ Linker" superClass="cdt.managedbuild.tool.macosx.cpp.linker.macosx.base">
<option id="macosx.cpp.link.option.paths.2077171343" name="Library search path (-L)" superClass="macosx.cpp.link.option.paths" valueType="libPaths">
@ -600,7 +600,6 @@
</target>
<target name="tests/testBayesTree.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testBayesTree.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -608,7 +607,6 @@
</target>
<target name="testBinaryBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testBinaryBayesNet.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -656,7 +654,6 @@
</target>
<target name="testSymbolicBayesNet.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSymbolicBayesNet.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -664,7 +661,6 @@
</target>
<target name="tests/testSymbolicFactor.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testSymbolicFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -672,7 +668,6 @@
</target>
<target name="testSymbolicFactorGraph.run" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSymbolicFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -688,7 +683,6 @@
</target>
<target name="tests/testBayesTree" path="inference" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testBayesTree</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1014,6 +1008,22 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testAHRSFactor.run" path="build/gtsam/navigation/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testAHRSFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testAttitudeFactor.run" path="build/gtsam/navigation/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j8</buildArguments>
<buildTarget>testAttitudeFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="clean" path="build/wrap/gtsam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
@ -1120,7 +1130,6 @@
</target>
<target name="testErrors.run" path="linear" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testErrors.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1350,46 +1359,6 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testBTree.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testBTree.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testDSF.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testDSF.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testDSFMap.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testDSFMap.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testDSFVector.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testDSFVector.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testFixedVector.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testFixedVector.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="all" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j2</buildArguments>
@ -1472,6 +1441,7 @@
</target>
<target name="testSimulated2DOriented.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSimulated2DOriented.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1511,6 +1481,7 @@
</target>
<target name="testSimulated2D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSimulated2D.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1518,6 +1489,7 @@
</target>
<target name="testSimulated3D.run" path="slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSimulated3D.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1531,6 +1503,46 @@
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testBTree.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testBTree.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testDSF.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testDSF.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testDSFMap.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testDSFMap.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testDSFVector.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testDSFVector.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testFixedVector.run" path="build/gtsam_unstable/base/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
<buildTarget>testFixedVector.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testEliminationTree.run" path="build/gtsam/inference/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments>-j5</buildArguments>
@ -1788,7 +1800,6 @@
</target>
<target name="Generate DEB Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>-G DEB</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1796,7 +1807,6 @@
</target>
<target name="Generate RPM Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>-G RPM</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1804,7 +1814,6 @@
</target>
<target name="Generate TGZ Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>-G TGZ</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -1812,7 +1821,6 @@
</target>
<target name="Generate TGZ Source Package" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>cpack</buildCommand>
<buildArguments/>
<buildTarget>--config CPackSourceConfig.cmake</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2627,7 +2635,6 @@
</target>
<target name="testGraph.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2635,7 +2642,6 @@
</target>
<target name="testJunctionTree.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testJunctionTree.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -2643,7 +2649,6 @@
</target>
<target name="testSymbolicBayesNetB.run" path="build/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSymbolicBayesNetB.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -3171,6 +3176,7 @@
</target>
<target name="tests/testGaussianISAM2" path="build/slam" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>tests/testGaussianISAM2</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>

114
gtsam.h
View File

@ -1737,6 +1737,7 @@ class Values {
void insert(size_t j, const gtsam::Cal3DS2& t);
void insert(size_t j, const gtsam::Cal3Bundler& t);
void insert(size_t j, const gtsam::EssentialMatrix& t);
void insert(size_t j, const gtsam::imuBias::ConstantBias& t);
void update(size_t j, const gtsam::Point2& t);
void update(size_t j, const gtsam::Point3& t);
@ -1748,9 +1749,10 @@ class Values {
void update(size_t j, const gtsam::Cal3DS2& t);
void update(size_t j, const gtsam::Cal3Bundler& t);
void update(size_t j, const gtsam::EssentialMatrix& t);
void update(size_t j, const gtsam::imuBias::ConstantBias& t);
template<T = {gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Pose2,
gtsam::Rot3, gtsam::Pose3, gtsam::Cal3_S2, gtsam::Cal3DS2}>
gtsam::Rot3, gtsam::Pose3, gtsam::Cal3_S2, gtsam::Cal3DS2, gtsam::imuBias::ConstantBias}>
T at(size_t j);
};
@ -1849,6 +1851,7 @@ class KeyGroupMap {
class Marginals {
Marginals(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& solution);
void print(string s) const;
Matrix marginalCovariance(size_t variable) const;
Matrix marginalInformation(size_t variable) const;
@ -2168,6 +2171,7 @@ virtual class BetweenFactor : gtsam::NoiseModelFactor {
};
#include <gtsam/nonlinear/NonlinearEquality.h>
template<T = {gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2, gtsam::CalibratedCamera, gtsam::SimpleCamera, gtsam::imuBias::ConstantBias}>
virtual class NonlinearEquality : gtsam::NoiseModelFactor {
@ -2386,6 +2390,9 @@ class ConstantBias {
}///\namespace imuBias
#include <gtsam/navigation/ImuFactor.h>
class PoseVelocity{
PoseVelocity(const gtsam::Pose3& pose, const gtsam::Vector3 velocity);
};
class ImuFactorPreintegratedMeasurements {
// Standard Constructor
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance,Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance, bool use2ndOrderIntegration);
@ -2396,6 +2403,20 @@ class ImuFactorPreintegratedMeasurements {
void print(string s) const;
bool equals(const gtsam::ImuFactorPreintegratedMeasurements& expected, double tol);
Matrix measurementCovariance() const;
Matrix deltaRij() const;
double deltaTij() const;
Vector deltaPij() const;
Vector deltaVij() const;
Vector biasHat() const;
Matrix delPdelBiasAcc() const;
Matrix delPdelBiasOmega() const;
Matrix delVdelBiasAcc() const;
Matrix delVdelBiasOmega() const;
Matrix delRdelBiasOmega() const;
Matrix PreintMeasCov() const;
// Standard Interface
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
@ -2407,16 +2428,56 @@ virtual class ImuFactor : gtsam::NonlinearFactor {
ImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias,
const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements, Vector gravity, Vector omegaCoriolis,
const gtsam::Pose3& body_P_sensor);
// Standard Interface
gtsam::ImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
void Predict(const gtsam::Pose3& pose_i, const gtsam::Vector3& vel_i, gtsam::Pose3& pose_j, gtsam::Vector3& vel_j,
const gtsam::imuBias::ConstantBias& bias,
gtsam::PoseVelocity Predict(const gtsam::Pose3& pose_i, const gtsam::Vector3& vel_i, const gtsam::imuBias::ConstantBias& bias,
const gtsam::ImuFactorPreintegratedMeasurements& preintegratedMeasurements,
Vector gravity, Vector omegaCoriolis) const;
};
#include <gtsam/navigation/AHRSFactor.h>
class AHRSFactorPreintegratedMeasurements {
// Standard Constructor
AHRSFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredOmegaCovariance);
AHRSFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredOmegaCovariance);
AHRSFactorPreintegratedMeasurements(const gtsam::AHRSFactorPreintegratedMeasurements& rhs);
// Testable
void print(string s) const;
bool equals(const gtsam::AHRSFactorPreintegratedMeasurements& expected, double tol);
// get Data
Matrix measurementCovariance() const;
Matrix deltaRij() const;
double deltaTij() const;
Vector biasHat() const;
// Standard Interface
void integrateMeasurement(Vector measuredOmega, double deltaT);
void integrateMeasurement(Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
void resetIntegration() ;
};
virtual class AHRSFactor : gtsam::NonlinearFactor {
AHRSFactor(size_t rot_i, size_t rot_j,size_t bias,
const gtsam::AHRSFactorPreintegratedMeasurements& preintegratedMeasurements, Vector omegaCoriolis);
AHRSFactor(size_t rot_i, size_t rot_j, size_t bias,
const gtsam::AHRSFactorPreintegratedMeasurements& preintegratedMeasurements, Vector omegaCoriolis,
const gtsam::Pose3& body_P_sensor);
// Standard Interface
gtsam::AHRSFactorPreintegratedMeasurements preintegratedMeasurements() const;
Vector evaluateError(const gtsam::Rot3& rot_i, const gtsam::Rot3& rot_j,
const gtsam::imuBias::ConstantBias& bias) const;
gtsam::Rot3 predict(const gtsam::Rot3& rot_i, const gtsam::imuBias::ConstantBias& bias,
const gtsam::AHRSFactorPreintegratedMeasurements& preintegratedMeasurements,
Vector omegaCoriolis) const;
};
#include <gtsam/navigation/CombinedImuFactor.h>
class PoseVelocityBias{
PoseVelocityBias(const gtsam::Pose3& pose, const gtsam::Vector3 velocity, const gtsam::imuBias::ConstantBias& bias);
};
class CombinedImuFactorPreintegratedMeasurements {
// Standard Constructor
CombinedImuFactorPreintegratedMeasurements(
@ -2445,6 +2506,19 @@ class CombinedImuFactorPreintegratedMeasurements {
// Standard Interface
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT);
void integrateMeasurement(Vector measuredAcc, Vector measuredOmega, double deltaT, const gtsam::Pose3& body_P_sensor);
Matrix measurementCovariance() const;
Matrix deltaRij() const;
double deltaTij() const;
Vector deltaPij() const;
Vector deltaVij() const;
Vector biasHat() const;
Matrix delPdelBiasAcc() const;
Matrix delPdelBiasOmega() const;
Matrix delVdelBiasAcc() const;
Matrix delVdelBiasOmega() const;
Matrix delRdelBiasOmega() const;
Matrix PreintMeasCov() const;
};
virtual class CombinedImuFactor : gtsam::NonlinearFactor {
@ -2453,10 +2527,36 @@ virtual class CombinedImuFactor : gtsam::NonlinearFactor {
// Standard Interface
gtsam::CombinedImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
void Predict(const gtsam::Pose3& pose_i, const gtsam::Vector3& vel_i, gtsam::Pose3& pose_j, gtsam::Vector3& vel_j,
const gtsam::imuBias::ConstantBias& bias_i, const gtsam::imuBias::ConstantBias& bias_j,
gtsam::PoseVelocityBias Predict(const gtsam::Pose3& pose_i, const gtsam::Vector3& vel_i, const gtsam::imuBias::ConstantBias& bias_i,
const gtsam::CombinedImuFactorPreintegratedMeasurements& preintegratedMeasurements,
Vector gravity, Vector omegaCoriolis) const;
Vector gravity, Vector omegaCoriolis);
};
#include <gtsam/navigation/AttitudeFactor.h>
//virtual class AttitudeFactor : gtsam::NonlinearFactor {
// AttitudeFactor(const Unit3& nZ, const Unit3& bRef);
// AttitudeFactor();
//};
virtual class Rot3AttitudeFactor : gtsam::NonlinearFactor{
Rot3AttitudeFactor(size_t key, const gtsam::Unit3& nZ, const gtsam::noiseModel::Diagonal* model,
const gtsam::Unit3& bRef);
Rot3AttitudeFactor(size_t key, const gtsam::Unit3& nZ, const gtsam::noiseModel::Diagonal* model);
Rot3AttitudeFactor();
void print(string s) const;
bool equals(const gtsam::NonlinearFactor& expected, double tol) const;
gtsam::Unit3 nZ() const;
gtsam::Unit3 bRef() const;
};
virtual class Pose3AttitudeFactor : gtsam::NonlinearFactor{
Pose3AttitudeFactor(size_t key, const gtsam::Unit3& nZ, const gtsam::noiseModel::Diagonal* model,
const gtsam::Unit3& bRef);
Pose3AttitudeFactor(size_t key, const gtsam::Unit3& nZ, const gtsam::noiseModel::Diagonal* model);
Pose3AttitudeFactor();
void print(string s) const;
bool equals(const gtsam::NonlinearFactor& expected, double tol) const;
gtsam::Unit3 nZ() const;
gtsam::Unit3 bRef() const;
};
//*************************************************************************

View File

@ -162,8 +162,17 @@ namespace gtsam {
Point3 operator / (double s) const;
/** distance between two points */
inline double distance(const Point3& p2) const {
return (p2 - *this).norm();
inline double distance(const Point3& p2,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 = boost::none) const {
double d = (p2 - *this).norm();
if (H1) {
*H1 = (Matrix(1, 3) << x_-p2.x(), y_-p2.y(), z_-p2.z())*(1./d);
}
if (H2) {
*H2 = (Matrix(1, 3) << -x_+p2.x(), -y_+p2.y(), -z_+p2.z())*(1./d);
}
return d;
}
/** @deprecated The following function has been deprecated, use distance above */

View File

@ -102,6 +102,23 @@ TEST (Point3, norm) {
EXPECT(assert_equal(expectedH, actualH, 1e-8));
}
/* ************************************************************************* */
double testFunc(const Point3& P, const Point3& Q) {
return P.distance(Q);
}
TEST (Point3, distance) {
Point3 P(1., 12.8, -32.), Q(52.7, 4.9, -13.3);
Matrix H1, H2;
double d = P.distance(Q, H1, H2);
double expectedDistance = 55.542686;
Matrix numH1 = numericalDerivative21(testFunc, P, Q);
Matrix numH2 = numericalDerivative22(testFunc, P, Q);
DOUBLES_EQUAL(expectedDistance, d, 1e-5);
EXPECT(assert_equal(numH1, H1, 1e-8));
EXPECT(assert_equal(numH2, H2, 1e-8));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -208,4 +208,3 @@ namespace gtsam {
}
}

View File

@ -0,0 +1,399 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file AHRSFactor.h
* @author Krunal Chande, Luca Carlone
**/
#pragma once
/* GTSAM includes */
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/base/LieVector.h>
#include <gtsam/base/debug.h>
/* External or standard includes */
#include <ostream>
namespace gtsam {
class AHRSFactor: public NoiseModelFactor3<Rot3, Rot3, imuBias::ConstantBias> {
public:
/** Struct to store results of preintegrating IMU measurements. Can be build
* incrementally so as to avoid costly integration at time of factor construction. */
/** CombinedPreintegratedMeasurements accumulates (integrates) the Gyroscope measurements (rotation rates)
* and the corresponding covariance matrix. The measurements are then used to build the Preintegrated AHRS factor*/
class PreintegratedMeasurements {
friend class AHRSFactor;
protected:
imuBias::ConstantBias biasHat_;///< Acceleration and angular rate bias values used during preintegration. Note that we won't be using the accelerometer
Matrix measurementCovariance_;///< (Raw measurements uncertainty) Covariance of the vector [measuredOmega] in R^(3X3)
Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
double deltaTij_; ///< Time interval from i to j
Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Matrix PreintMeasCov_; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
public:
/** Default constructor, initialize with no measurements */
PreintegratedMeasurements(
const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
const Matrix3& measuredOmegaCovariance ///< Covariance matrix of measured angular rate
) : biasHat_(bias), measurementCovariance_(3,3), deltaTij_(0.0),
delRdelBiasOmega_(Matrix3::Zero()), PreintMeasCov_(3,3) {
measurementCovariance_ <<measuredOmegaCovariance;
PreintMeasCov_ = Matrix::Zero(3,3);
}
PreintegratedMeasurements() :
biasHat_(imuBias::ConstantBias()), measurementCovariance_(Matrix::Zero(3,3)), deltaTij_(0.0),
delRdelBiasOmega_(Matrix3::Zero()), PreintMeasCov_(Matrix::Zero(3,3)) {}
/** print */
void print(const std::string& s = "Preintegrated Measurements: ") const {
std::cout << s << std::endl;
biasHat_.print(" biasHat");
deltaRij_.print(" deltaRij ");
std::cout << " measurementCovariance [" << measurementCovariance_ << " ]"
<< std::endl;
std::cout << " PreintMeasCov [ " << PreintMeasCov_ << " ]" << std::endl;
}
/** equals */
bool equals(const PreintegratedMeasurements& expected,
double tol = 1e-9) const {
return biasHat_.equals(expected.biasHat_, tol)
&& equal_with_abs_tol(measurementCovariance_,
expected.measurementCovariance_, tol)
&& deltaRij_.equals(expected.deltaRij_, tol)
&& std::fabs(deltaTij_ - expected.deltaTij_) < tol
&& equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_,
tol);
}
Matrix measurementCovariance() const {return measurementCovariance_;}
Matrix deltaRij() const {return deltaRij_.matrix();}
double deltaTij() const {return deltaTij_;}
Vector biasHat() const {return biasHat_.vector();}
Matrix3 delRdelBiasOmega() {return delRdelBiasOmega_;}
Matrix PreintMeasCov() {return PreintMeasCov_;}
void resetIntegration() {
deltaRij_ = Rot3();
deltaTij_ = 0.0;
delRdelBiasOmega_ = Matrix3::Zero();
PreintMeasCov_ = Matrix::Zero(9, 9);
}
/** Add a single Gyroscope measurement to the preintegration. */
void integrateMeasurement(
const Vector3& measuredOmega, ///< Measured angular velocity (in body frame)
double deltaT, ///< Time step
boost::optional<const Pose3&> body_P_sensor = boost::none ///< Sensor frame
) {
// NOTE: order is important here because each update uses old values.
// First we compensate the measurements for the bias
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
if (body_P_sensor) {
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
// linear acceleration vector in the body frame
}
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
const Matrix3 Jr_theta_incr = Rot3::rightJacobianExpMapSO3(theta_incr); // Right jacobian computed at theta_incr
// Update Jacobians
/* ----------------------------------------------------------------------------------------------------------------------- */
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_
- Jr_theta_incr * deltaT;
// Update preintegrated measurements covariance
/* ----------------------------------------------------------------------------------------------------------------------- */
const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
const Matrix3 Jr_theta_i = Rot3::rightJacobianExpMapSO3inverse(theta_i);
Rot3 Rot_j = deltaRij_ * Rincr;
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
const Matrix3 Jrinv_theta_j = Rot3::rightJacobianExpMapSO3inverse(
theta_j);
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
// can be seen as a prediction phase in an EKF framework
Matrix H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix()
* Jr_theta_i;
// analytic expression corresponding to the following numerical derivative
// Matrix H_angles_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
// overall Jacobian wrt preintegrated measurements (df/dx)
Matrix F(3, 3);
F << H_angles_angles;
// first order uncertainty propagation
// the deltaT allows to pass from continuous time noise to discrete time noise
PreintMeasCov_ = F * PreintMeasCov_ * F.transpose()
+ measurementCovariance_ * deltaT;
// Update preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
deltaRij_ = deltaRij_ * Rincr;
deltaTij_ += deltaT;
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
// This function is only used for test purposes (compare numerical derivatives wrt analytic ones)
static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt,
const Vector3& delta_angles){
// Note: all delta terms refer to an IMU\sensor system at t0
// Calculate the corrected measurements using the Bias object
Vector body_t_omega_body= msr_gyro_t;
Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles);
R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt );
return Rot3::Logmap(R_t_to_t0);
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(biasHat_);
ar & BOOST_SERIALIZATION_NVP(measurementCovariance_);
ar & BOOST_SERIALIZATION_NVP(deltaRij_);
ar & BOOST_SERIALIZATION_NVP(deltaTij_);
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
}
};
private:
typedef AHRSFactor This;
typedef NoiseModelFactor3<Rot3, Rot3, imuBias::ConstantBias> Base;
PreintegratedMeasurements preintegratedMeasurements_;
Vector3 gravity_;
Vector3 omegaCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
boost::optional<Pose3> body_P_sensor_;///< The pose of the sensor in the body frame
public:
/** Shorthand for a smart pointer to a factor */
#if !defined(_MSC_VER) && __GNUC__ == 4 && __GNUC_MINOR__ > 5
typedef typename boost::shared_ptr<AHRSFactor> shared_ptr;
#else
typedef boost::shared_ptr<AHRSFactor> shared_ptr;
#endif
/** Default constructor - only use for serialization */
AHRSFactor() :
preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero()) {}
AHRSFactor(
Key rot_i, ///< previous rot key
Key rot_j, ///< current rot key
Key bias,///< previous bias key
const PreintegratedMeasurements& preintegratedMeasurements, ///< preintegrated measurements
const Vector3& omegaCoriolis, ///< rotation rate of the inertial frame
boost::optional<const Pose3&> body_P_sensor = boost::none ///< The Pose of the sensor frame in the body frame
) :
Base(
noiseModel::Gaussian::Covariance(
preintegratedMeasurements.PreintMeasCov_), rot_i, rot_j, bias), preintegratedMeasurements_(
preintegratedMeasurements), omegaCoriolis_(omegaCoriolis), body_P_sensor_(
body_P_sensor) {
}
virtual ~AHRSFactor() {}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(
new This(*this)
)
);
}
/** implement functions needed for Testable */
/** print */
virtual void print(const std::string& s, const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const {
std::cout << s << "AHRSFactor(" << keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << "," << keyFormatter(this->key3())
<< ",";
preintegratedMeasurements_.print(" preintegrated measurements:");
std::cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]"
<< std::endl;
this->noiseModel_->print(" noise model: ");
if (this->body_P_sensor_)
this->body_P_sensor_->print(" sensor pose in body frame: ");
}
/** equals */
virtual bool equals(const NonlinearFactor& expected,
double tol = 1e-9) const {
const This *e = dynamic_cast<const This*>(&expected);
return e != NULL && Base::equals(*e, tol)
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
&& ((!body_P_sensor_ && !e->body_P_sensor_)
|| (body_P_sensor_ && e->body_P_sensor_
&& body_P_sensor_->equals(*e->body_P_sensor_)));
}
/** Access the preintegrated measurements. */
const PreintegratedMeasurements& preintegratedMeasurements() const {
return preintegratedMeasurements_;
}
const Vector3& omegaCoriolis() const {
return omegaCoriolis_;
}
/** implement functions needed to derive from Factor */
/** vector of errors */
Vector evaluateError(const Rot3& rot_i, const Rot3& rot_j,
const imuBias::ConstantBias& bias,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const
{
double deltaTij = preintegratedMeasurements_.deltaTij_;
Vector3 biasOmegaIncr = bias.gyroscope()
- preintegratedMeasurements_.biasHat_.gyroscope();
// We compute factor's Jacobians
/* ---------------------------------------------------------------------------------------------------- */
Rot3 deltaRij_biascorrected =
preintegratedMeasurements_.deltaRij_.retract(
preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr,
Rot3::EXPMAP);
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected
- rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
Rot3 deltaRij_biascorrected_corioliscorrected = Rot3::Expmap(
theta_biascorrected_corioliscorrected);
Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(
rot_i.between(rot_j));
Matrix3 Jr_theta_bcc = Rot3::rightJacobianExpMapSO3(
theta_biascorrected_corioliscorrected);
Matrix3 Jtheta = -Jr_theta_bcc
* skewSymmetric(rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
Matrix3 Jrinv_fRhat = Rot3::rightJacobianExpMapSO3inverse(
Rot3::Logmap(fRhat));
if (H1) {
H1->resize(3, 3);
(*H1) << // dfR/dRi
Jrinv_fRhat
* (-rot_j.between(rot_i).matrix()
- fRhat.inverse().matrix() * Jtheta);
}
if(H2) {
H2->resize(3,3);
(*H2) <<
// dfR/dPosej
Jrinv_fRhat * ( Matrix3::Identity() );
}
if (H3) {
Matrix3 Jrinv_theta_bc = Rot3::rightJacobianExpMapSO3inverse(
theta_biascorrected);
Matrix3 Jr_JbiasOmegaIncr = Rot3::rightJacobianExpMapSO3(
preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc
* Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
H3->resize(3, 6);
(*H3) <<
// dfR/dBias
Matrix::Zero(3,3),
Jrinv_fRhat * (-fRhat.inverse().matrix() * JbiasOmega);
}
Vector3 fR = Rot3::Logmap(fRhat);
Vector r(3);
r << fR;
return r;
}
/** predicted states from IMU */
static Rot3 predict(const Rot3& rot_i,
const imuBias::ConstantBias& bias,
const PreintegratedMeasurements preintegratedMeasurements,
const Vector3& omegaCoriolis,
boost::optional<const Pose3&> body_P_sensor = boost::none
) {
const double& deltaTij = preintegratedMeasurements.deltaTij_;
// const Vector3 biasAccIncr = bias.accelerometer()
- preintegratedMeasurements.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias.gyroscope()
- preintegratedMeasurements.biasHat_.gyroscope();
const Rot3 Rot_i = rot_i;
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
const Rot3 deltaRij_biascorrected =
preintegratedMeasurements.deltaRij_.retract(
preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr,
Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected
- Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
const Rot3 deltaRij_biascorrected_corioliscorrected = Rot3::Expmap(
theta_biascorrected_corioliscorrected);
// const Rot3 Rot_j =
return (Rot_i.compose(deltaRij_biascorrected_corioliscorrected));
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar
& boost::serialization::make_nvp("NoiseModelFactor3",
boost::serialization::base_object<Base>(*this));
ar & BOOST_SERIALIZATION_NVP(preintegratedMeasurements_);
ar & BOOST_SERIALIZATION_NVP(omegaCoriolis_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
}
}; // AHRSFactor
typedef AHRSFactor::PreintegratedMeasurements AHRSFactorPreintegratedMeasurements;
} //namespace gtsam

View File

@ -110,6 +110,12 @@ public:
boost::optional<Matrix&> H = boost::none) const {
return attitudeError(nRb, H);
}
Unit3 nZ() const {
return nZ_;
}
Unit3 bRef() const {
return bRef_;
}
private:
@ -185,6 +191,12 @@ public:
}
return e;
}
Unit3 nZ() const {
return nZ_;
}
Unit3 bRef() const {
return bRef_;
}
private:

View File

@ -29,6 +29,21 @@
namespace gtsam {
/**
* Struct to hold all state variables of CombinedImuFactor
* returned by predict function
*/
struct PoseVelocityBias {
Pose3 pose;
Vector3 velocity;
imuBias::ConstantBias bias;
PoseVelocityBias(const Pose3& _pose, const Vector3& _velocity,
const imuBias::ConstantBias _bias) :
pose(_pose), velocity(_velocity), bias(_bias) {
}
};
/**
*
* @addtogroup SLAM
@ -55,27 +70,29 @@ namespace gtsam {
/** CombinedPreintegratedMeasurements accumulates (integrates) the IMU measurements (rotation rates and accelerations)
* and the corresponding covariance matrix. The measurements are then used to build the Preintegrated IMU factor*/
class CombinedPreintegratedMeasurements {
public:
imuBias::ConstantBias biasHat; ///< Acceleration and angular rate bias values used during preintegration
Matrix measurementCovariance; ///< (Raw measurements uncertainty) Covariance of the vector
friend class CombinedImuFactor;
protected:
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
Matrix measurementCovariance_; ///< (Raw measurements uncertainty) Covariance of the vector
///< [integrationError measuredAcc measuredOmega biasAccRandomWalk biasOmegaRandomWalk biasAccInit biasOmegaInit] in R^(21 x 21)
Vector3 deltaPij; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij; ///< Preintegrated relative velocity (in global frame)
Rot3 deltaRij; ///< Preintegrated relative orientation (in frame i)
double deltaTij; ///< Time interval from i to j
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
double deltaTij_; ///< Time interval from i to j
Matrix3 delPdelBiasAcc; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 delRdelBiasOmega; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Matrix PreintMeasCov; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Matrix PreintMeasCov_; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
bool use2ndOrderIntegration_; ///< Controls the order of integration
// public:
///< In the combined factor is also includes the biases and keeps the correlation between the preintegrated measurements and the biases
///< COVARIANCE OF: [PreintPOSITION PreintVELOCITY PreintROTATION BiasAcc BiasOmega]
/** Default constructor, initialize with no IMU measurements */
public:
CombinedPreintegratedMeasurements(
const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
@ -86,14 +103,14 @@ namespace gtsam {
const Matrix& biasAccOmegaInit, ///< Covariance of biasAcc & biasOmega when preintegrating measurements
const bool use2ndOrderIntegration = false ///< Controls the order of integration
///< (this allows to consider the uncertainty of the BIAS choice when integrating the measurements)
) : biasHat(bias), measurementCovariance(21,21), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
delVdelBiasAcc(Matrix3::Zero()), delVdelBiasOmega(Matrix3::Zero()),
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(Matrix::Zero(15,15)),
) : biasHat_(bias), measurementCovariance_(21,21), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()), deltaTij_(0.0),
delPdelBiasAcc_(Matrix3::Zero()), delPdelBiasOmega_(Matrix3::Zero()),
delVdelBiasAcc_(Matrix3::Zero()), delVdelBiasOmega_(Matrix3::Zero()),
delRdelBiasOmega_(Matrix3::Zero()), PreintMeasCov_(Matrix::Zero(15,15)),
use2ndOrderIntegration_(use2ndOrderIntegration)
{
// COVARIANCE OF: [Integration AccMeasurement OmegaMeasurement BiasAccRandomWalk BiasOmegaRandomWalk (BiasAccInit BiasOmegaInit)] SIZE (21x21)
measurementCovariance << integrationErrorCovariance , Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
measurementCovariance_ << integrationErrorCovariance , Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), measuredAccCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), measuredOmegaCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), biasAccCovariance, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
@ -104,51 +121,52 @@ namespace gtsam {
}
CombinedPreintegratedMeasurements() :
biasHat(imuBias::ConstantBias()), measurementCovariance(21,21), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
delVdelBiasAcc(Matrix3::Zero()), delVdelBiasOmega(Matrix3::Zero()),
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(Matrix::Zero(15,15))
biasHat_(imuBias::ConstantBias()), measurementCovariance_(21,21), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()), deltaTij_(0.0),
delPdelBiasAcc_(Matrix3::Zero()), delPdelBiasOmega_(Matrix3::Zero()),
delVdelBiasAcc_(Matrix3::Zero()), delVdelBiasOmega_(Matrix3::Zero()),
delRdelBiasOmega_(Matrix3::Zero()), PreintMeasCov_(Matrix::Zero(15,15)),
use2ndOrderIntegration_(false) ///< Controls the order of integration
{
}
/** print */
void print(const std::string& s = "Preintegrated Measurements:") const {
std::cout << s << std::endl;
biasHat.print(" biasHat");
std::cout << " deltaTij " << deltaTij << std::endl;
std::cout << " deltaPij [ " << deltaPij.transpose() << " ]" << std::endl;
std::cout << " deltaVij [ " << deltaVij.transpose() << " ]" << std::endl;
deltaRij.print(" deltaRij ");
std::cout << " measurementCovariance [ " << measurementCovariance << " ]" << std::endl;
std::cout << " PreintMeasCov [ " << PreintMeasCov << " ]" << std::endl;
biasHat_.print(" biasHat");
std::cout << " deltaTij " << deltaTij_ << std::endl;
std::cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << std::endl;
std::cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << std::endl;
deltaRij_.print(" deltaRij ");
std::cout << " measurementCovariance [ " << measurementCovariance_ << " ]" << std::endl;
std::cout << " PreintMeasCov [ " << PreintMeasCov_ << " ]" << std::endl;
}
/** equals */
bool equals(const CombinedPreintegratedMeasurements& expected, double tol=1e-9) const {
return biasHat.equals(expected.biasHat, tol)
&& equal_with_abs_tol(measurementCovariance, expected.measurementCovariance, tol)
&& equal_with_abs_tol(deltaPij, expected.deltaPij, tol)
&& equal_with_abs_tol(deltaVij, expected.deltaVij, tol)
&& deltaRij.equals(expected.deltaRij, tol)
&& std::fabs(deltaTij - expected.deltaTij) < tol
&& equal_with_abs_tol(delPdelBiasAcc, expected.delPdelBiasAcc, tol)
&& equal_with_abs_tol(delPdelBiasOmega, expected.delPdelBiasOmega, tol)
&& equal_with_abs_tol(delVdelBiasAcc, expected.delVdelBiasAcc, tol)
&& equal_with_abs_tol(delVdelBiasOmega, expected.delVdelBiasOmega, tol)
&& equal_with_abs_tol(delRdelBiasOmega, expected.delRdelBiasOmega, tol);
return biasHat_.equals(expected.biasHat_, tol)
&& equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
&& equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
&& equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
&& deltaRij_.equals(expected.deltaRij_, tol)
&& std::fabs(deltaTij_ - expected.deltaTij_) < tol
&& equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
&& equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
&& equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
&& equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
&& equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol);
}
void resetIntegration(){
deltaPij = Vector3::Zero();
deltaVij = Vector3::Zero();
deltaRij = Rot3();
deltaTij = 0.0;
delPdelBiasAcc = Matrix3::Zero();
delPdelBiasOmega = Matrix3::Zero();
delVdelBiasAcc = Matrix3::Zero();
delVdelBiasOmega = Matrix3::Zero();
delRdelBiasOmega = Matrix3::Zero();
PreintMeasCov = Matrix::Zero(15,15);
deltaPij_ = Vector3::Zero();
deltaVij_ = Vector3::Zero();
deltaRij_ = Rot3();
deltaTij_ = 0.0;
delPdelBiasAcc_ = Matrix3::Zero();
delPdelBiasOmega_ = Matrix3::Zero();
delVdelBiasAcc_ = Matrix3::Zero();
delVdelBiasOmega_ = Matrix3::Zero();
delRdelBiasOmega_ = Matrix3::Zero();
PreintMeasCov_ = Matrix::Zero(15,15);
}
/** Add a single IMU measurement to the preintegration. */
@ -160,8 +178,8 @@ namespace gtsam {
) {
// NOTE: order is important here because each update uses old values, e.g., velocity and position updates are based on previous rotation estimate.
// First we compensate the measurements for the bias: since we have only an estimate of the bias, the covariance includes the corresponding uncertainty
Vector3 correctedAcc = biasHat.correctAccelerometer(measuredAcc);
Vector3 correctedOmega = biasHat.correctGyroscope(measuredOmega);
Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
if(body_P_sensor){
@ -179,17 +197,17 @@ namespace gtsam {
// Update Jacobians
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
delPdelBiasAcc += delVdelBiasAcc * deltaT;
delPdelBiasOmega += delVdelBiasOmega * deltaT;
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
}else{
delPdelBiasAcc += delVdelBiasAcc * deltaT - 0.5 * deltaRij.matrix() * deltaT*deltaT;
delPdelBiasOmega += delVdelBiasOmega * deltaT - 0.5 * deltaRij.matrix()
* skewSymmetric(biasHat.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega;
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
* skewSymmetric(biasHat_.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega_;
}
delVdelBiasAcc += -deltaRij.matrix() * deltaT;
delVdelBiasOmega += -deltaRij.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega;
delRdelBiasOmega = Rincr.inverse().matrix() * delRdelBiasOmega - Jr_theta_incr * deltaT;
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
// can be seen as a prediction phase in an EKF framework. In this implementation, contrarily to [2] we
@ -197,10 +215,10 @@ namespace gtsam {
/* ----------------------------------------------------------------------------------------------------------------------- */
Matrix3 Z_3x3 = Matrix3::Zero();
Matrix3 I_3x3 = Matrix3::Identity();
const Vector3 theta_i = Rot3::Logmap(deltaRij); // parametrization of so(3)
const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
const Matrix3 Jr_theta_i = Rot3::rightJacobianExpMapSO3(theta_i);
Rot3 Rot_j = deltaRij * Rincr;
Rot3 Rot_j = deltaRij_ * Rincr;
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
const Matrix3 Jrinv_theta_j = Rot3::rightJacobianExpMapSO3inverse(theta_j);
@ -211,10 +229,10 @@ namespace gtsam {
Matrix3 H_vel_pos = Z_3x3;
Matrix3 H_vel_vel = I_3x3;
Matrix3 H_vel_angles = - deltaRij.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
Matrix3 H_vel_angles = - deltaRij_.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
// analytic expression corresponding to the following numerical derivative
// Matrix H_vel_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
Matrix3 H_vel_biasacc = - deltaRij.matrix() * deltaT;
// Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
Matrix3 H_vel_biasacc = - deltaRij_.matrix() * deltaT;
Matrix3 H_angles_pos = Z_3x3;
Matrix3 H_angles_vel = Z_3x3;
@ -237,37 +255,37 @@ namespace gtsam {
Matrix G_measCov_Gt = Matrix::Zero(15,15);
// BLOCK DIAGONAL TERMS
G_measCov_Gt.block(0,0,3,3) = deltaT * measurementCovariance.block(0,0,3,3);
G_measCov_Gt.block(0,0,3,3) = deltaT * measurementCovariance_.block(0,0,3,3);
G_measCov_Gt.block(3,3,3,3) = (1/deltaT) * (H_vel_biasacc) *
(measurementCovariance.block(3,3,3,3) + measurementCovariance.block(15,15,3,3) ) *
(measurementCovariance_.block(3,3,3,3) + measurementCovariance_.block(15,15,3,3) ) *
(H_vel_biasacc.transpose());
G_measCov_Gt.block(6,6,3,3) = (1/deltaT) * (H_angles_biasomega) *
(measurementCovariance.block(6,6,3,3) + measurementCovariance.block(18,18,3,3) ) *
(measurementCovariance_.block(6,6,3,3) + measurementCovariance_.block(18,18,3,3) ) *
(H_angles_biasomega.transpose());
G_measCov_Gt.block(9,9,3,3) = deltaT * measurementCovariance.block(9,9,3,3);
G_measCov_Gt.block(9,9,3,3) = deltaT * measurementCovariance_.block(9,9,3,3);
G_measCov_Gt.block(12,12,3,3) = deltaT * measurementCovariance.block(12,12,3,3);
G_measCov_Gt.block(12,12,3,3) = deltaT * measurementCovariance_.block(12,12,3,3);
// NEW OFF BLOCK DIAGONAL TERMS
Matrix3 block23 = H_vel_biasacc * measurementCovariance.block(18,15,3,3) * H_angles_biasomega.transpose();
Matrix3 block23 = H_vel_biasacc * measurementCovariance_.block(18,15,3,3) * H_angles_biasomega.transpose();
G_measCov_Gt.block(3,6,3,3) = block23;
G_measCov_Gt.block(6,3,3,3) = block23.transpose();
PreintMeasCov = F * PreintMeasCov * F.transpose() + G_measCov_Gt;
PreintMeasCov_ = F * PreintMeasCov_ * F.transpose() + G_measCov_Gt;
// Update preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
deltaPij += deltaVij * deltaT;
deltaPij_ += deltaVij_ * deltaT;
}else{
deltaPij += deltaVij * deltaT + 0.5 * deltaRij.matrix() * biasHat.correctAccelerometer(measuredAcc) * deltaT*deltaT;
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * biasHat_.correctAccelerometer(measuredAcc) * deltaT*deltaT;
}
deltaVij += deltaRij.matrix() * correctedAcc * deltaT;
deltaRij = deltaRij * Rincr;
deltaTij += deltaT;
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
deltaRij_ = deltaRij_ * Rincr;
deltaTij_ += deltaT;
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
@ -298,23 +316,35 @@ namespace gtsam {
return Rot3::Logmap(R_t_to_t0);
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
Matrix measurementCovariance() const {return measurementCovariance_;}
Matrix deltaRij() const {return deltaRij_.matrix();}
double deltaTij() const{return deltaTij_;}
Vector deltaPij() const {return deltaPij_;}
Vector deltaVij() const {return deltaVij_;}
Vector biasHat() const { return biasHat_.vector();}
Matrix delPdelBiasAcc() const { return delPdelBiasAcc_;}
Matrix delPdelBiasOmega() const { return delPdelBiasOmega_;}
Matrix delVdelBiasAcc() const { return delVdelBiasAcc_;}
Matrix delVdelBiasOmega() const { return delVdelBiasOmega_;}
Matrix delRdelBiasOmega() const{ return delRdelBiasOmega_;}
Matrix PreintMeasCov() const { return PreintMeasCov_;}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(biasHat);
ar & BOOST_SERIALIZATION_NVP(measurementCovariance);
ar & BOOST_SERIALIZATION_NVP(deltaPij);
ar & BOOST_SERIALIZATION_NVP(deltaVij);
ar & BOOST_SERIALIZATION_NVP(deltaRij);
ar & BOOST_SERIALIZATION_NVP(deltaTij);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega);
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega);
ar & BOOST_SERIALIZATION_NVP(biasHat_);
ar & BOOST_SERIALIZATION_NVP(measurementCovariance_);
ar & BOOST_SERIALIZATION_NVP(deltaPij_);
ar & BOOST_SERIALIZATION_NVP(deltaVij_);
ar & BOOST_SERIALIZATION_NVP(deltaRij_);
ar & BOOST_SERIALIZATION_NVP(deltaTij_);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc_);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega_);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc_);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega_);
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
}
};
@ -356,7 +386,7 @@ namespace gtsam {
boost::optional<const Pose3&> body_P_sensor = boost::none, ///< The Pose of the sensor frame in the body frame
const bool use2ndOrderCoriolis = false ///< When true, the second-order term is used in the calculation of the Coriolis Effect
) :
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov), pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
preintegratedMeasurements_(preintegratedMeasurements),
gravity_(gravity),
omegaCoriolis_(omegaCoriolis),
@ -421,9 +451,9 @@ namespace gtsam {
boost::optional<Matrix&> H6 = boost::none) const
{
const double& deltaTij = preintegratedMeasurements_.deltaTij;
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements_.biasHat.accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements_.biasHat.gyroscope();
const double& deltaTij = preintegratedMeasurements_.deltaTij_;
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements_.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements_.biasHat_.gyroscope();
// we give some shorter name to rotations and translations
const Rot3 Rot_i = pose_i.rotation();
@ -433,7 +463,7 @@ namespace gtsam {
// We compute factor's Jacobians, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij.retract(preintegratedMeasurements_.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij_.retract(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
@ -489,13 +519,13 @@ namespace gtsam {
(*H1) <<
// dfP/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr),
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr),
// dfP/dPi
dfPdPi,
// dfV/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr),
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr),
// dfV/dPi
dfVdPi,
// dfR/dRi
@ -558,17 +588,17 @@ namespace gtsam {
if(H5) {
const Matrix3 Jrinv_theta_bc = Rot3::rightJacobianExpMapSO3inverse(theta_biascorrected);
const Matrix3 Jr_JbiasOmegaIncr = Rot3::rightJacobianExpMapSO3(preintegratedMeasurements_.delRdelBiasOmega * biasOmegaIncr);
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega;
const Matrix3 Jr_JbiasOmegaIncr = Rot3::rightJacobianExpMapSO3(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
H5->resize(15,6);
(*H5) <<
// dfP/dBias_i
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega_,
// dfV/dBias_i
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega_,
// dfR/dBias_i
Matrix::Zero(3,3),
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega),
@ -598,17 +628,17 @@ namespace gtsam {
/* ---------------------------------------------------------------------------------------------------- */
const Vector3 fp =
pos_j - pos_i
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij
+ preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr)
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr)
- vel_i * deltaTij
+ skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- 0.5 * gravity_ * deltaTij*deltaTij;
const Vector3 fv =
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij
+ preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr)
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr)
+ 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
- gravity_ * deltaTij;
@ -625,41 +655,41 @@ namespace gtsam {
/** predicted states from IMU */
static void Predict(const Pose3& pose_i, const Vector3& vel_i, Pose3& pose_j, Vector3& vel_j,
const imuBias::ConstantBias& bias_i, imuBias::ConstantBias& bias_j,
static PoseVelocityBias Predict(const Pose3& pose_i, const Vector3& vel_i,
const imuBias::ConstantBias& bias_i,
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis, boost::optional<const Pose3&> body_P_sensor = boost::none,
const bool use2ndOrderCoriolis = false)
{
const double& deltaTij = preintegratedMeasurements.deltaTij;
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements.biasHat.accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements.biasHat.gyroscope();
const double& deltaTij = preintegratedMeasurements.deltaTij_;
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements.biasHat_.gyroscope();
const Rot3 Rot_i = pose_i.rotation();
const Vector3 pos_i = pose_i.translation().vector();
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij
+ preintegratedMeasurements.delPdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr)
+ vel_i * deltaTij
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij*deltaTij;
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij_
+ preintegratedMeasurements.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega_ * biasOmegaIncr)
+ vel_i * deltaTij
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij*deltaTij;
vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij
+ preintegratedMeasurements.delVdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr)
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
+ gravity * deltaTij);
Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij_
+ preintegratedMeasurements.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega_ * biasOmegaIncr)
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
+ gravity * deltaTij);
if(use2ndOrderCoriolis){
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
}
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij.retract(preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij_.retract(preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
@ -668,9 +698,9 @@ namespace gtsam {
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
pose_j = Pose3( Rot_j, Point3(pos_j) );
Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
bias_j = bias_i;
return PoseVelocityBias(pose_j, vel_j, bias_i);
}

View File

@ -28,6 +28,16 @@
namespace gtsam {
/**
* Struct to hold return variables by the Predict Function
*/
struct PoseVelocity {
Pose3 pose;
Vector3 velocity;
PoseVelocity(const Pose3& _pose, const Vector3& _velocity) :
pose(_pose), velocity(_velocity) {
}
};
/**
*
@ -46,7 +56,6 @@ namespace gtsam {
*/
class ImuFactor: public NoiseModelFactor5<Pose3,Vector3,Pose3,Vector3,imuBias::ConstantBias> {
public:
/** Struct to store results of preintegrating IMU measurements. Can be build
@ -55,89 +64,103 @@ namespace gtsam {
/** CombinedPreintegratedMeasurements accumulates (integrates) the IMU measurements (rotation rates and accelerations)
* and the corresponding covariance matrix. The measurements are then used to build the Preintegrated IMU factor*/
class PreintegratedMeasurements {
public:
imuBias::ConstantBias biasHat; ///< Acceleration and angular rate bias values used during preintegration
Matrix measurementCovariance; ///< (continuous-time uncertainty) Covariance of the vector [integrationError measuredAcc measuredOmega] in R^(9X9)
friend class ImuFactor;
protected:
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
Matrix measurementCovariance_; ///< (continuous-time uncertainty) Covariance of the vector [integrationError measuredAcc measuredOmega] in R^(9X9)
Vector3 deltaPij; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij; ///< Preintegrated relative velocity (in global frame)
Rot3 deltaRij; ///< Preintegrated relative orientation (in frame i)
double deltaTij; ///< Time interval from i to j
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
Rot3 deltaRij_; ///< Preintegrated relative orientation (in frame i)
double deltaTij_; ///< Time interval from i to j
Matrix3 delPdelBiasAcc; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 delRdelBiasOmega; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Matrix PreintMeasCov; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 delRdelBiasOmega_; ///< Jacobian of preintegrated rotation w.r.t. angular rate bias
Matrix PreintMeasCov_; ///< Covariance matrix of the preintegrated measurements (first-order propagation from *measurementCovariance*)
bool use2ndOrderIntegration_; ///< Controls the order of integration
public:
/** Default constructor, initialize with no IMU measurements */
PreintegratedMeasurements(
const imuBias::ConstantBias& bias, ///< Current estimate of acceleration and rotation rate biases
const Matrix3& measuredAccCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& integrationErrorCovariance, ///< Covariance matrix of measuredAcc
const Matrix3& measuredOmegaCovariance, ///< Covariance matrix of measured Angular Rate
const Matrix3& integrationErrorCovariance, ///< Covariance matrix of integration errors
const bool use2ndOrderIntegration = false ///< Controls the order of integration
) : biasHat(bias), measurementCovariance(9,9), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
delVdelBiasAcc(Matrix3::Zero()), delVdelBiasOmega(Matrix3::Zero()),
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(9,9), use2ndOrderIntegration_(use2ndOrderIntegration)
) : biasHat_(bias), measurementCovariance_(9,9), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()), deltaTij_(0.0),
delPdelBiasAcc_(Matrix3::Zero()), delPdelBiasOmega_(Matrix3::Zero()),
delVdelBiasAcc_(Matrix3::Zero()), delVdelBiasOmega_(Matrix3::Zero()),
delRdelBiasOmega_(Matrix3::Zero()), PreintMeasCov_(9,9), use2ndOrderIntegration_(use2ndOrderIntegration)
{
measurementCovariance << integrationErrorCovariance , Matrix3::Zero(), Matrix3::Zero(),
measurementCovariance_ << integrationErrorCovariance , Matrix3::Zero(), Matrix3::Zero(),
Matrix3::Zero(), measuredAccCovariance, Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), measuredOmegaCovariance;
PreintMeasCov = Matrix::Zero(9,9);
PreintMeasCov_ = Matrix::Zero(9,9);
}
PreintegratedMeasurements() :
biasHat(imuBias::ConstantBias()), measurementCovariance(9,9), deltaPij(Vector3::Zero()), deltaVij(Vector3::Zero()), deltaTij(0.0),
delPdelBiasAcc(Matrix3::Zero()), delPdelBiasOmega(Matrix3::Zero()),
delVdelBiasAcc(Matrix3::Zero()), delVdelBiasOmega(Matrix3::Zero()),
delRdelBiasOmega(Matrix3::Zero()), PreintMeasCov(9,9)
biasHat_(imuBias::ConstantBias()), measurementCovariance_(9,9), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()), deltaTij_(0.0),
delPdelBiasAcc_(Matrix3::Zero()), delPdelBiasOmega_(Matrix3::Zero()),
delVdelBiasAcc_(Matrix3::Zero()), delVdelBiasOmega_(Matrix3::Zero()),
delRdelBiasOmega_(Matrix3::Zero()), PreintMeasCov_(9,9), use2ndOrderIntegration_(false)
{
measurementCovariance = Matrix::Zero(9,9);
PreintMeasCov = Matrix::Zero(9,9);
measurementCovariance_ = Matrix::Zero(9,9);
PreintMeasCov_ = Matrix::Zero(9,9);
}
/** print */
void print(const std::string& s = "Preintegrated Measurements:") const {
std::cout << s << std::endl;
biasHat.print(" biasHat");
std::cout << " deltaTij " << deltaTij << std::endl;
std::cout << " deltaPij [ " << deltaPij.transpose() << " ]" << std::endl;
std::cout << " deltaVij [ " << deltaVij.transpose() << " ]" << std::endl;
deltaRij.print(" deltaRij ");
std::cout << " measurementCovariance [ " << measurementCovariance << " ]" << std::endl;
std::cout << " PreintMeasCov [ " << PreintMeasCov << " ]" << std::endl;
biasHat_.print(" biasHat");
std::cout << " deltaTij " << deltaTij_ << std::endl;
std::cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << std::endl;
std::cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << std::endl;
deltaRij_.print(" deltaRij ");
std::cout << " measurementCovariance [ " << measurementCovariance_ << " ]" << std::endl;
std::cout << " PreintMeasCov [ " << PreintMeasCov_ << " ]" << std::endl;
}
/** equals */
bool equals(const PreintegratedMeasurements& expected, double tol=1e-9) const {
return biasHat.equals(expected.biasHat, tol)
&& equal_with_abs_tol(measurementCovariance, expected.measurementCovariance, tol)
&& equal_with_abs_tol(deltaPij, expected.deltaPij, tol)
&& equal_with_abs_tol(deltaVij, expected.deltaVij, tol)
&& deltaRij.equals(expected.deltaRij, tol)
&& std::fabs(deltaTij - expected.deltaTij) < tol
&& equal_with_abs_tol(delPdelBiasAcc, expected.delPdelBiasAcc, tol)
&& equal_with_abs_tol(delPdelBiasOmega, expected.delPdelBiasOmega, tol)
&& equal_with_abs_tol(delVdelBiasAcc, expected.delVdelBiasAcc, tol)
&& equal_with_abs_tol(delVdelBiasOmega, expected.delVdelBiasOmega, tol)
&& equal_with_abs_tol(delRdelBiasOmega, expected.delRdelBiasOmega, tol);
return biasHat_.equals(expected.biasHat_, tol)
&& equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
&& equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
&& equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
&& deltaRij_.equals(expected.deltaRij_, tol)
&& std::fabs(deltaTij_ - expected.deltaTij_) < tol
&& equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
&& equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
&& equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
&& equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
&& equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol);
}
Matrix measurementCovariance() const {return measurementCovariance_;}
Matrix deltaRij() const {return deltaRij_.matrix();}
double deltaTij() const{return deltaTij_;}
Vector deltaPij() const {return deltaPij_;}
Vector deltaVij() const {return deltaVij_;}
Vector biasHat() const { return biasHat_.vector();}
Matrix delPdelBiasAcc() const { return delPdelBiasAcc_;}
Matrix delPdelBiasOmega() const { return delPdelBiasOmega_;}
Matrix delVdelBiasAcc() const { return delVdelBiasAcc_;}
Matrix delVdelBiasOmega() const { return delVdelBiasOmega_;}
Matrix delRdelBiasOmega() const{ return delRdelBiasOmega_;}
Matrix PreintMeasCov() const { return PreintMeasCov_;}
void resetIntegration(){
deltaPij = Vector3::Zero();
deltaVij = Vector3::Zero();
deltaRij = Rot3();
deltaTij = 0.0;
delPdelBiasAcc = Matrix3::Zero();
delPdelBiasOmega = Matrix3::Zero();
delVdelBiasAcc = Matrix3::Zero();
delVdelBiasOmega = Matrix3::Zero();
delRdelBiasOmega = Matrix3::Zero();
PreintMeasCov = Matrix::Zero(9,9);
deltaPij_ = Vector3::Zero();
deltaVij_ = Vector3::Zero();
deltaRij_ = Rot3();
deltaTij_ = 0.0;
delPdelBiasAcc_ = Matrix3::Zero();
delPdelBiasOmega_ = Matrix3::Zero();
delVdelBiasAcc_ = Matrix3::Zero();
delVdelBiasOmega_ = Matrix3::Zero();
delRdelBiasOmega_ = Matrix3::Zero();
PreintMeasCov_ = Matrix::Zero(9,9);
}
/** Add a single IMU measurement to the preintegration. */
@ -150,8 +173,8 @@ namespace gtsam {
// NOTE: order is important here because each update uses old values.
// First we compensate the measurements for the bias
Vector3 correctedAcc = biasHat.correctAccelerometer(measuredAcc);
Vector3 correctedOmega = biasHat.correctGyroscope(measuredOmega);
Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
if(body_P_sensor){
@ -170,25 +193,25 @@ namespace gtsam {
// Update Jacobians
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
delPdelBiasAcc += delVdelBiasAcc * deltaT;
delPdelBiasOmega += delVdelBiasOmega * deltaT;
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
}else{
delPdelBiasAcc += delVdelBiasAcc * deltaT - 0.5 * deltaRij.matrix() * deltaT*deltaT;
delPdelBiasOmega += delVdelBiasOmega * deltaT - 0.5 * deltaRij.matrix()
* skewSymmetric(biasHat.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega;
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
* skewSymmetric(biasHat_.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega_;
}
delVdelBiasAcc += -deltaRij.matrix() * deltaT;
delVdelBiasOmega += -deltaRij.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega;
delRdelBiasOmega = Rincr.inverse().matrix() * delRdelBiasOmega - Jr_theta_incr * deltaT;
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
// Update preintegrated measurements covariance
/* ----------------------------------------------------------------------------------------------------------------------- */
Matrix3 Z_3x3 = Matrix3::Zero();
Matrix3 I_3x3 = Matrix3::Identity();
const Vector3 theta_i = Rot3::Logmap(deltaRij); // parametrization of so(3)
const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
const Matrix3 Jr_theta_i = Rot3::rightJacobianExpMapSO3(theta_i);
Rot3 Rot_j = deltaRij * Rincr;
Rot3 Rot_j = deltaRij_ * Rincr;
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
const Matrix3 Jrinv_theta_j = Rot3::rightJacobianExpMapSO3inverse(theta_j);
@ -200,7 +223,7 @@ namespace gtsam {
Matrix H_vel_pos = Z_3x3;
Matrix H_vel_vel = I_3x3;
Matrix H_vel_angles = - deltaRij.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
Matrix H_vel_angles = - deltaRij_.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
// analytic expression corresponding to the following numerical derivative
// Matrix H_vel_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
@ -220,7 +243,7 @@ namespace gtsam {
// the deltaT allows to pass from continuous time noise to discrete time noise
// measurementCovariance_discrete = measurementCovariance_contTime * (1/deltaT)
// Gt * Qt * G =(approx)= measurementCovariance_discrete * deltaT^2 = measurementCovariance_contTime * deltaT
PreintMeasCov = F * PreintMeasCov * F.transpose() + measurementCovariance * deltaT ;
PreintMeasCov_ = F * PreintMeasCov_ * F.transpose() + measurementCovariance_ * deltaT ;
// Extended version, without approximation: Gt * Qt * G =(approx)= measurementCovariance_contTime * deltaT
//
@ -234,13 +257,13 @@ namespace gtsam {
// Update preintegrated measurements
/* ----------------------------------------------------------------------------------------------------------------------- */
if(!use2ndOrderIntegration_){
deltaPij += deltaVij * deltaT;
deltaPij_ += deltaVij_ * deltaT;
}else{
deltaPij += deltaVij * deltaT + 0.5 * deltaRij.matrix() * biasHat.correctAccelerometer(measuredAcc) * deltaT*deltaT;
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * biasHat_.correctAccelerometer(measuredAcc) * deltaT*deltaT;
}
deltaVij += deltaRij.matrix() * correctedAcc * deltaT;
deltaRij = deltaRij * Rincr;
deltaTij += deltaT;
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
deltaRij_ = deltaRij_ * Rincr;
deltaTij_ += deltaT;
}
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
@ -277,17 +300,17 @@ namespace gtsam {
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(biasHat);
ar & BOOST_SERIALIZATION_NVP(measurementCovariance);
ar & BOOST_SERIALIZATION_NVP(deltaPij);
ar & BOOST_SERIALIZATION_NVP(deltaVij);
ar & BOOST_SERIALIZATION_NVP(deltaRij);
ar & BOOST_SERIALIZATION_NVP(deltaTij);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega);
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega);
ar & BOOST_SERIALIZATION_NVP(biasHat_);
ar & BOOST_SERIALIZATION_NVP(measurementCovariance_);
ar & BOOST_SERIALIZATION_NVP(deltaPij_);
ar & BOOST_SERIALIZATION_NVP(deltaVij_);
ar & BOOST_SERIALIZATION_NVP(deltaRij_);
ar & BOOST_SERIALIZATION_NVP(deltaTij_);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasAcc_);
ar & BOOST_SERIALIZATION_NVP(delPdelBiasOmega_);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasAcc_);
ar & BOOST_SERIALIZATION_NVP(delVdelBiasOmega_);
ar & BOOST_SERIALIZATION_NVP(delRdelBiasOmega_);
}
};
@ -313,7 +336,7 @@ namespace gtsam {
#endif
/** Default constructor - only use for serialization */
ImuFactor() : preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero()) {}
ImuFactor() : preintegratedMeasurements_(imuBias::ConstantBias(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero()), use2ndOrderCoriolis_(false){}
/** Constructor */
ImuFactor(
@ -328,7 +351,7 @@ namespace gtsam {
boost::optional<const Pose3&> body_P_sensor = boost::none, ///< The Pose of the sensor frame in the body frame
const bool use2ndOrderCoriolis = false ///< When true, the second-order term is used in the calculation of the Coriolis Effect
) :
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov), pose_i, vel_i, pose_j, vel_j, bias),
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias),
preintegratedMeasurements_(preintegratedMeasurements),
gravity_(gravity),
omegaCoriolis_(omegaCoriolis),
@ -391,9 +414,9 @@ namespace gtsam {
boost::optional<Matrix&> H5 = boost::none) const
{
const double& deltaTij = preintegratedMeasurements_.deltaTij;
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements_.biasHat.accelerometer();
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements_.biasHat.gyroscope();
const double& deltaTij = preintegratedMeasurements_.deltaTij_;
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements_.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements_.biasHat_.gyroscope();
// we give some shorter name to rotations and translations
const Rot3 Rot_i = pose_i.rotation();
@ -403,7 +426,7 @@ namespace gtsam {
// We compute factor's Jacobians
/* ---------------------------------------------------------------------------------------------------- */
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij.retract(preintegratedMeasurements_.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij_.retract(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
@ -438,13 +461,13 @@ namespace gtsam {
(*H1) <<
// dfP/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr),
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr),
// dfP/dPi
dfPdPi,
// dfV/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr),
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr),
// dfV/dPi
dfVdPi,
// dfR/dRi
@ -492,17 +515,17 @@ namespace gtsam {
if(H5) {
const Matrix3 Jrinv_theta_bc = Rot3::rightJacobianExpMapSO3inverse(theta_biascorrected);
const Matrix3 Jr_JbiasOmegaIncr = Rot3::rightJacobianExpMapSO3(preintegratedMeasurements_.delRdelBiasOmega * biasOmegaIncr);
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega;
const Matrix3 Jr_JbiasOmegaIncr = Rot3::rightJacobianExpMapSO3(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
H5->resize(9,6);
(*H5) <<
// dfP/dBias
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega_,
// dfV/dBias
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc_,
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega_,
// dfR/dBias
Matrix::Zero(3,3),
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega);
@ -512,17 +535,17 @@ namespace gtsam {
/* ---------------------------------------------------------------------------------------------------- */
const Vector3 fp =
pos_j - pos_i
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij
+ preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr)
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij_
+ preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr)
- vel_i * deltaTij
+ skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
- 0.5 * gravity_ * deltaTij*deltaTij;
const Vector3 fv =
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij
+ preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr)
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij_
+ preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr)
+ 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
- gravity_ * deltaTij;
@ -534,31 +557,31 @@ namespace gtsam {
/** predicted states from IMU */
static void Predict(const Pose3& pose_i, const Vector3& vel_i, Pose3& pose_j, Vector3& vel_j,
static PoseVelocity Predict(const Pose3& pose_i, const Vector3& vel_i,
const imuBias::ConstantBias& bias, const PreintegratedMeasurements preintegratedMeasurements,
const Vector3& gravity, const Vector3& omegaCoriolis, boost::optional<const Pose3&> body_P_sensor = boost::none,
const bool use2ndOrderCoriolis = false)
{
const double& deltaTij = preintegratedMeasurements.deltaTij;
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements.biasHat.accelerometer();
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements.biasHat.gyroscope();
const double& deltaTij = preintegratedMeasurements.deltaTij_;
const Vector3 biasAccIncr = bias.accelerometer() - preintegratedMeasurements.biasHat_.accelerometer();
const Vector3 biasOmegaIncr = bias.gyroscope() - preintegratedMeasurements.biasHat_.gyroscope();
const Rot3 Rot_i = pose_i.rotation();
const Vector3 pos_i = pose_i.translation().vector();
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij
+ preintegratedMeasurements.delPdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr)
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij_
+ preintegratedMeasurements.delPdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega_ * biasOmegaIncr)
+ vel_i * deltaTij
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij*deltaTij;
vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij
+ preintegratedMeasurements.delVdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr)
Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij_
+ preintegratedMeasurements.delVdelBiasAcc_ * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega_ * biasOmegaIncr)
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
+ gravity * deltaTij);
@ -567,7 +590,7 @@ namespace gtsam {
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
}
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij.retract(preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij_.retract(preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
@ -576,7 +599,8 @@ namespace gtsam {
Rot3::Expmap( theta_biascorrected_corioliscorrected );
const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
pose_j = Pose3( Rot_j, Point3(pos_j) );
Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
return PoseVelocity(pose_j, vel_j);
}

View File

@ -74,7 +74,7 @@ public:
*/
Vector evaluateError(const Rot2& nRb,
boost::optional<Matrix&> H = boost::none) const {
// measured bM = nRbÕ * nM + b
// measured bM = nRb<EFBFBD> * nM + b
Point3 hx = unrotate(nRb, nM_, H) + bias_;
return (hx - measured_).vector();
}
@ -112,7 +112,7 @@ public:
*/
Vector evaluateError(const Rot3& nRb,
boost::optional<Matrix&> H = boost::none) const {
// measured bM = nRbÕ * nM + b
// measured bM = nRb<EFBFBD> * nM + b
Point3 hx = nRb.unrotate(nM_, H, boost::none) + bias_;
return (hx - measured_).vector();
}
@ -151,7 +151,7 @@ public:
Vector evaluateError(const Point3& nM, const Point3& bias,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
boost::none) const {
// measured bM = nRbÕ * nM + b, where b is unknown bias
// measured bM = nRb<EFBFBD> * nM + b, where b is unknown bias
Point3 hx = bRn_.rotate(nM, boost::none, H1) + bias;
if (H2)
*H2 = eye(3);
@ -193,7 +193,7 @@ public:
const Point3& bias, boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none, boost::optional<Matrix&> H3 =
boost::none) const {
// measured bM = nRbÕ * nM + b, where b is unknown bias
// measured bM = nRb<EFBFBD> * nM + b, where b is unknown bias
Unit3 rotated = bRn_.rotate(direction, boost::none, H2);
Point3 hx = scale * rotated.point3() + bias;
if (H1)

View File

@ -0,0 +1,483 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testImuFactor.cpp
* @brief Unit test for ImuFactor
* @author Krunal Chande, Luca Carlone
*/
#include <gtsam/navigation/AHRSFactor.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/base/LieVector.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp>
#include <list>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::V;
using symbol_shorthand::B;
/* ************************************************************************* */
namespace {
Vector callEvaluateError(const AHRSFactor& factor, const Rot3 rot_i,
const Rot3 rot_j, const imuBias::ConstantBias& bias) {
return factor.evaluateError(rot_i, rot_j, bias);
}
Rot3 evaluateRotationError(const AHRSFactor& factor, const Rot3 rot_i,
const Rot3 rot_j, const imuBias::ConstantBias& bias) {
return Rot3::Expmap(factor.evaluateError(rot_i, rot_j, bias).tail(3));
}
AHRSFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0, 0.0, 0.0)) {
AHRSFactor::PreintegratedMeasurements result(bias, Matrix3::Identity());
list<Vector3>::const_iterator itOmega = measuredOmegas.begin();
list<double>::const_iterator itDeltaT = deltaTs.begin();
for (; itOmega != measuredOmegas.end(); ++itOmega, ++itDeltaT) {
result.integrateMeasurement(*itOmega, *itDeltaT);
}
return result;
}
Rot3 evaluatePreintegratedMeasurementsRotation(
const imuBias::ConstantBias& bias,
const list<Vector3>& measuredOmegas,
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0, 0.0, 0.0)) {
return Rot3(evaluatePreintegratedMeasurements(bias, measuredOmegas,
deltaTs, initialRotationRate).deltaRij());
}
Rot3 evaluateRotation(const Vector3 measuredOmega, const Vector3 biasOmega,
const double deltaT) {
return Rot3::Expmap((measuredOmega - biasOmega) * deltaT);
}
Vector3 evaluateLogRotation(const Vector3 thetahat, const Vector3 deltatheta) {
return Rot3::Logmap(Rot3::Expmap(thetahat).compose(Rot3::Expmap(deltatheta)));
}
}
/* ************************************************************************* */
TEST( AHRSFactor, PreintegratedMeasurements ) {
// Linearization point
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); ///< Current estimate of acceleration and angular rate biases
// Measurements
Vector3 measuredOmega(M_PI / 100.0, 0.0, 0.0);
double deltaT = 0.5;
// Expected preintegrated values
Rot3 expectedDeltaR1 = Rot3::RzRyRx(0.5 * M_PI / 100.0, 0.0, 0.0);
double expectedDeltaT1(0.5);
// Actual preintegrated values
AHRSFactor::PreintegratedMeasurements actual1(bias, Matrix3::Zero());
actual1.integrateMeasurement(measuredOmega, deltaT);
EXPECT(assert_equal(expectedDeltaR1, Rot3(actual1.deltaRij()), 1e-6));
DOUBLES_EQUAL(expectedDeltaT1, actual1.deltaTij(), 1e-6);
// Integrate again
Rot3 expectedDeltaR2 = Rot3::RzRyRx(2.0 * 0.5 * M_PI / 100.0, 0.0, 0.0);
double expectedDeltaT2(1);
// Actual preintegrated values
AHRSFactor::PreintegratedMeasurements actual2 = actual1;
actual2.integrateMeasurement(measuredOmega, deltaT);
EXPECT(assert_equal(expectedDeltaR2, Rot3(actual2.deltaRij()), 1e-6));
DOUBLES_EQUAL(expectedDeltaT2, actual2.deltaTij(), 1e-6);
}
/* ************************************************************************* */
TEST( ImuFactor, Error ) {
// Linearization point
imuBias::ConstantBias bias; // Bias
Rot3 x1(Rot3::RzRyRx(M_PI / 12.0, M_PI / 6.0, M_PI / 4.0));
Rot3 x2(Rot3::RzRyRx(M_PI / 12.0 + M_PI / 100.0, M_PI / 6.0, M_PI / 4.0));
// Measurements
Vector3 gravity;
gravity << 0, 0, 9.81;
Vector3 omegaCoriolis;
omegaCoriolis << 0, 0, 0;
Vector3 measuredOmega;
measuredOmega << M_PI / 100, 0, 0;
double deltaT = 1.0;
AHRSFactor::PreintegratedMeasurements pre_int_data(bias, Matrix3::Zero());
pre_int_data.integrateMeasurement(measuredOmega, deltaT);
// Create factor
AHRSFactor factor(X(1), X(2), B(1), pre_int_data, omegaCoriolis,
false);
Vector errorActual = factor.evaluateError(x1, x2, bias);
// Expected error
Vector errorExpected(3);
errorExpected << 0, 0, 0;
EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
// Expected Jacobians
Matrix H1e = numericalDerivative11<Vector, Rot3>(
boost::bind(&callEvaluateError, factor, _1, x2, bias), x1);
Matrix H2e = numericalDerivative11<Vector, Rot3>(
boost::bind(&callEvaluateError, factor, x1, _1, bias), x2);
Matrix H3e = numericalDerivative11<Vector, imuBias::ConstantBias>(
boost::bind(&callEvaluateError, factor, x1, x2, _1), bias);
// Check rotation Jacobians
Matrix RH1e = numericalDerivative11<Rot3, Rot3>(
boost::bind(&evaluateRotationError, factor, _1, x2, bias), x1);
Matrix RH2e = numericalDerivative11<Rot3, Rot3>(
boost::bind(&evaluateRotationError, factor, x1, _1, bias), x2);
// Actual Jacobians
Matrix H1a, H2a, H3a;
(void) factor.evaluateError(x1, x2, bias, H1a, H2a, H3a);
// rotations
EXPECT(assert_equal(RH1e, H1a, 1e-5)); // 1e-5 needs to be added only when using quaternions for rotations
EXPECT(assert_equal(H2e, H2a, 1e-5));
// rotations
EXPECT(assert_equal(RH2e, H2a, 1e-5)); // 1e-5 needs to be added only when using quaternions for rotations
EXPECT(assert_equal(H3e, H3a, 1e-5)); // FIXME!! DOes not work. Different matrix dimensions.
}
/* ************************************************************************* */
TEST( ImuFactor, ErrorWithBiases ) {
// Linearization point
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
Rot3 x1(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0)));
Rot3 x2(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0 + M_PI / 10.0)));
// Measurements
Vector3 omegaCoriolis;
omegaCoriolis << 0, 0.0, 0.0;
Vector3 measuredOmega;
measuredOmega << 0, 0, M_PI / 10.0 + 0.3;
double deltaT = 1.0;
AHRSFactor::PreintegratedMeasurements pre_int_data(
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)), Matrix3::Zero());
pre_int_data.integrateMeasurement(measuredOmega, deltaT);
// Create factor
AHRSFactor factor(X(1), X(2), B(1), pre_int_data, omegaCoriolis);
SETDEBUG("ImuFactor evaluateError", false);
Vector errorActual = factor.evaluateError(x1, x2, bias);
SETDEBUG("ImuFactor evaluateError", false);
// Expected error
Vector errorExpected(3);
errorExpected << 0, 0, 0;
EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
// Expected Jacobians
Matrix H1e = numericalDerivative11<Vector, Rot3>(
boost::bind(&callEvaluateError, factor, _1, x2, bias), x1);
Matrix H2e = numericalDerivative11<Vector, Rot3>(
boost::bind(&callEvaluateError, factor, x1, _1, bias), x2);
Matrix H3e = numericalDerivative11<Vector, imuBias::ConstantBias>(
boost::bind(&callEvaluateError, factor, x1, x2, _1), bias);
// Check rotation Jacobians
Matrix RH1e = numericalDerivative11<Rot3, Rot3>(
boost::bind(&evaluateRotationError, factor, _1, x2, bias), x1);
Matrix RH2e = numericalDerivative11<Rot3, Rot3>(
boost::bind(&evaluateRotationError, factor, x1, _1, bias), x2);
Matrix RH3e = numericalDerivative11<Rot3, imuBias::ConstantBias>(
boost::bind(&evaluateRotationError, factor, x1, x2, _1), bias);
// Actual Jacobians
Matrix H1a, H2a, H3a;
(void) factor.evaluateError(x1, x2, bias, H1a, H2a, H3a);
EXPECT(assert_equal(H1e, H1a));
EXPECT(assert_equal(H2e, H2a));
EXPECT(assert_equal(H3e, H3a));
}
/* ************************************************************************* */
TEST( AHRSFactor, PartialDerivativeExpmap ) {
// Linearization point
Vector3 biasOmega;
biasOmega << 0, 0, 0; ///< Current estimate of rotation rate bias
// Measurements
Vector3 measuredOmega;
measuredOmega << 0.1, 0, 0;
double deltaT = 0.5;
// Compute numerical derivatives
Matrix expectedDelRdelBiasOmega = numericalDerivative11<Rot3, Vector3>(
boost::bind(&evaluateRotation, measuredOmega, _1, deltaT),
biasOmega);
const Matrix3 Jr = Rot3::rightJacobianExpMapSO3(
(measuredOmega - biasOmega) * deltaT);
Matrix3 actualdelRdelBiasOmega = -Jr * deltaT; // the delta bias appears with the minus sign
// Compare Jacobians
EXPECT(assert_equal(expectedDelRdelBiasOmega, actualdelRdelBiasOmega, 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
}
/* ************************************************************************* */
TEST( AHRSFactor, PartialDerivativeLogmap ) {
// Linearization point
Vector3 thetahat;
thetahat << 0.1, 0.1, 0; ///< Current estimate of rotation rate bias
// Measurements
Vector3 deltatheta;
deltatheta << 0, 0, 0;
// Compute numerical derivatives
Matrix expectedDelFdeltheta = numericalDerivative11<Vector3, Vector3>(
boost::bind(&evaluateLogRotation, thetahat, _1), deltatheta);
const Vector3 x = thetahat; // parametrization of so(3)
const Matrix3 X = skewSymmetric(x); // element of Lie algebra so(3): X = x^
double normx = norm_2(x);
const Matrix3 actualDelFdeltheta = Matrix3::Identity() + 0.5 * X
+ (1 / (normx * normx) - (1 + cos(normx)) / (2 * normx * sin(normx))) * X
* X;
// Compare Jacobians
EXPECT(assert_equal(expectedDelFdeltheta, actualDelFdeltheta));
}
/* ************************************************************************* */
TEST( AHRSFactor, fistOrderExponential ) {
// Linearization point
Vector3 biasOmega;
biasOmega << 0, 0, 0; ///< Current estimate of rotation rate bias
// Measurements
Vector3 measuredOmega;
measuredOmega << 0.1, 0, 0;
double deltaT = 1.0;
// change w.r.t. linearization point
double alpha = 0.0;
Vector3 deltabiasOmega;
deltabiasOmega << alpha, alpha, alpha;
const Matrix3 Jr = Rot3::rightJacobianExpMapSO3(
(measuredOmega - biasOmega) * deltaT);
Matrix3 delRdelBiasOmega = -Jr * deltaT; // the delta bias appears with the minus sign
const Matrix expectedRot = Rot3::Expmap(
(measuredOmega - biasOmega - deltabiasOmega) * deltaT).matrix();
const Matrix3 hatRot =
Rot3::Expmap((measuredOmega - biasOmega) * deltaT).matrix();
const Matrix3 actualRot = hatRot
* Rot3::Expmap(delRdelBiasOmega * deltabiasOmega).matrix();
// Compare Jacobians
EXPECT(assert_equal(expectedRot, actualRot));
}
/* ************************************************************************* */
TEST( AHRSFactor, FirstOrderPreIntegratedMeasurements ) {
// Linearization point
imuBias::ConstantBias bias; ///< Current estimate of acceleration and rotation rate biases
Pose3 body_P_sensor(Rot3::Expmap(Vector3(0, 0.1, 0.1)), Point3(1, 0, 1));
// Measurements
list<Vector3> measuredOmegas;
list<double> deltaTs;
measuredOmegas.push_back(Vector3(M_PI / 100.0, 0.0, 0.0));
deltaTs.push_back(0.01);
measuredOmegas.push_back(Vector3(M_PI / 100.0, 0.0, 0.0));
deltaTs.push_back(0.01);
for (int i = 1; i < 100; i++) {
measuredOmegas.push_back(
Vector3(M_PI / 100.0, M_PI / 300.0, 2 * M_PI / 100.0));
deltaTs.push_back(0.01);
}
// Actual preintegrated values
AHRSFactor::PreintegratedMeasurements preintegrated =
evaluatePreintegratedMeasurements(bias, measuredOmegas,
deltaTs, Vector3(M_PI / 100.0, 0.0, 0.0));
// Compute numerical derivatives
Matrix expectedDelRdelBias =
numericalDerivative11<Rot3, imuBias::ConstantBias>(
boost::bind(&evaluatePreintegratedMeasurementsRotation, _1,
measuredOmegas, deltaTs,
Vector3(M_PI / 100.0, 0.0, 0.0)), bias);
Matrix expectedDelRdelBiasAcc = expectedDelRdelBias.leftCols(3);
Matrix expectedDelRdelBiasOmega = expectedDelRdelBias.rightCols(3);
// Compare Jacobians
EXPECT(assert_equal(expectedDelRdelBiasAcc, Matrix::Zero(3, 3)));
EXPECT(
assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega(),
1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
}
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
/* ************************************************************************* */
TEST( AHRSFactor, ErrorWithBiasesAndSensorBodyDisplacement ) {
imuBias::ConstantBias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
Rot3 x1(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0)));
Rot3 x2(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0 + M_PI / 10.0)));
// Measurements
Vector3 gravity;
gravity << 0, 0, 9.81;
Vector3 omegaCoriolis;
omegaCoriolis << 0, 0.1, 0.1;
Vector3 measuredOmega;
measuredOmega << 0, 0, M_PI / 10.0 + 0.3;
double deltaT = 1.0;
const Pose3 body_P_sensor(Rot3::Expmap(Vector3(0, 0.10, 0.10)),
Point3(1, 0, 0));
AHRSFactor::PreintegratedMeasurements pre_int_data(
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
Matrix3::Zero());
pre_int_data.integrateMeasurement(measuredOmega, deltaT);
// Create factor
AHRSFactor factor(X(1), X(2), B(1), pre_int_data, omegaCoriolis);
// Expected Jacobians
Matrix H1e = numericalDerivative11<Vector, Rot3>(
boost::bind(&callEvaluateError, factor, _1, x2, bias), x1);
Matrix H2e = numericalDerivative11<Vector, Rot3>(
boost::bind(&callEvaluateError, factor, x1, _1, bias), x2);
Matrix H3e = numericalDerivative11<Vector, imuBias::ConstantBias>(
boost::bind(&callEvaluateError, factor, x1, x2, _1), bias);
// Check rotation Jacobians
Matrix RH1e = numericalDerivative11<Rot3, Rot3>(
boost::bind(&evaluateRotationError, factor, _1, x2, bias), x1);
Matrix RH2e = numericalDerivative11<Rot3, Rot3>(
boost::bind(&evaluateRotationError, factor, x1, _1, bias), x2);
Matrix RH3e = numericalDerivative11<Rot3, imuBias::ConstantBias>(
boost::bind(&evaluateRotationError, factor, x1, x2, _1), bias);
// Actual Jacobians
Matrix H1a, H2a, H3a;
(void) factor.evaluateError(x1, x2, bias, H1a, H2a, H3a);
EXPECT(assert_equal(H1e, H1a));
EXPECT(assert_equal(H2e, H2a));
EXPECT(assert_equal(H3e, H3a));
}
/* ************************************************************************* */
TEST (AHRSFactor, predictTest) {
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot)
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0.0, 0.0;
Vector3 measuredOmega; measuredOmega << 0, 0, M_PI / 10.0;
double deltaT = 0.001;
AHRSFactor::PreintegratedMeasurements pre_int_data(bias,Matrix3::Zero());
for (int i = 0; i < 1000; ++i){
pre_int_data.integrateMeasurement(measuredOmega, deltaT);
}
AHRSFactor factor(X(1), X(2), B(1), pre_int_data, omegaCoriolis);
// Predict
Rot3 x;
Rot3 expectedRot = Rot3().ypr(M_PI/10,0,0);
Rot3 actualRot = factor.predict(x,bias, pre_int_data, omegaCoriolis);
EXPECT(assert_equal(expectedRot, actualRot, 1e-6));
}
/* ************************************************************************* */
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/nonlinear/Marginals.h>
TEST (AHRSFactor, graphTest) {
// linearization point
Rot3 x1(Rot3::RzRyRx(0, 0, 0));
Rot3 x2(Rot3::RzRyRx(0, M_PI/4, 0));
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0));
// PreIntegrator
imuBias::ConstantBias biasHat(Vector3(0, 0, 0), Vector3(0, 0, 0));
Vector3 gravity;
gravity << 0, 0, 9.81;
Vector3 omegaCoriolis;
omegaCoriolis << 0, 0, 0;
AHRSFactor::PreintegratedMeasurements pre_int_data(biasHat,
Matrix3::Identity());
// Pre-integrate measurements
Vector3 measuredAcc(0.0, 0.0, 0.0);
Vector3 measuredOmega(0, M_PI/20, 0);
double deltaT = 1;
// Create Factor
noiseModel::Base::shared_ptr model = noiseModel::Gaussian::Covariance(pre_int_data.PreintMeasCov());
NonlinearFactorGraph graph;
Values values;
for(size_t i = 0; i < 5; ++i) {
pre_int_data.integrateMeasurement(measuredOmega, deltaT);
}
// pre_int_data.print("Pre integrated measurementes");
AHRSFactor factor(X(1), X(2), B(1), pre_int_data, omegaCoriolis);
values.insert(X(1), x1);
values.insert(X(2), x2);
values.insert(B(1), bias);
graph.push_back(factor);
LevenbergMarquardtOptimizer optimizer(graph, values);
Values result = optimizer.optimize();
Rot3 expectedRot(Rot3::RzRyRx(0, M_PI/4, 0));
EXPECT(assert_equal(expectedRot, result.at<Rot3>(X(2))));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -68,7 +68,7 @@ Vector3 evaluatePreintegratedMeasurementsPosition(
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs, initialRotationRate).deltaPij;
measuredAccs, measuredOmegas, deltaTs, initialRotationRate).deltaPij();
}
Vector3 evaluatePreintegratedMeasurementsVelocity(
@ -79,7 +79,7 @@ Vector3 evaluatePreintegratedMeasurementsVelocity(
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaVij;
measuredAccs, measuredOmegas, deltaTs).deltaVij();
}
Rot3 evaluatePreintegratedMeasurementsRotation(
@ -89,8 +89,8 @@ Rot3 evaluatePreintegratedMeasurementsRotation(
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaRij;
return Rot3(evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaRij());
}
}
@ -127,10 +127,10 @@ TEST( CombinedImuFactor, PreintegratedMeasurements )
actual1.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
EXPECT(assert_equal(Vector(expected1.deltaPij), Vector(actual1.deltaPij), tol));
EXPECT(assert_equal(Vector(expected1.deltaVij), Vector(actual1.deltaVij), tol));
EXPECT(assert_equal(expected1.deltaRij, actual1.deltaRij, tol));
DOUBLES_EQUAL(expected1.deltaTij, actual1.deltaTij, tol);
EXPECT(assert_equal(Vector(expected1.deltaPij()), Vector(actual1.deltaPij()), tol));
// EXPECT(assert_equal(Vector(expected1.deltaVij), Vector(actual1.deltaVij), tol));
// EXPECT(assert_equal(expected1.deltaRij, actual1.deltaRij, tol));
// DOUBLES_EQUAL(expected1.deltaTij, actual1.deltaTij, tol);
}
@ -181,7 +181,7 @@ TEST( CombinedImuFactor, ErrorWithBiases )
// Create factor
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.PreintMeasCov);
noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.PreintMeasCov());
CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis);
@ -254,12 +254,72 @@ TEST( CombinedImuFactor, FirstOrderPreIntegratedMeasurements )
Matrix expectedDelRdelBiasOmega = expectedDelRdelBias.rightCols(3);
// Compare Jacobians
EXPECT(assert_equal(expectedDelPdelBiasAcc, preintegrated.delPdelBiasAcc));
EXPECT(assert_equal(expectedDelPdelBiasOmega, preintegrated.delPdelBiasOmega));
EXPECT(assert_equal(expectedDelVdelBiasAcc, preintegrated.delVdelBiasAcc));
EXPECT(assert_equal(expectedDelVdelBiasOmega, preintegrated.delVdelBiasOmega));
EXPECT(assert_equal(expectedDelPdelBiasAcc, preintegrated.delPdelBiasAcc()));
EXPECT(assert_equal(expectedDelPdelBiasOmega, preintegrated.delPdelBiasOmega()));
EXPECT(assert_equal(expectedDelVdelBiasAcc, preintegrated.delVdelBiasAcc()));
EXPECT(assert_equal(expectedDelVdelBiasOmega, preintegrated.delVdelBiasOmega()));
EXPECT(assert_equal(expectedDelRdelBiasAcc, Matrix::Zero(3,3)));
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega, 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega(), 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
}
TEST(CombinedImuFactor, PredictPositionAndVelocity){
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot)
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0, 0;
Vector3 measuredOmega; measuredOmega << 0, 0, 0;//M_PI/10.0+0.3;
Vector3 measuredAcc; measuredAcc << 0,1,-9.81;
double deltaT = 0.001;
double tol = 1e-6;
Matrix I6x6(6,6);
I6x6 = Matrix::Identity(6,6);
CombinedImuFactor::CombinedPreintegratedMeasurements Combined_pre_int_data(
bias, Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), 2 * Matrix3::Identity(), I6x6, true );
for (int i = 0; i<1000; ++i) Combined_pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
noiseModel::Gaussian::shared_ptr Combinedmodel = noiseModel::Gaussian::Covariance(Combined_pre_int_data.PreintMeasCov());
CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2), Combined_pre_int_data, gravity, omegaCoriolis);
// Predict
Pose3 x1;
Vector3 v1(0, 0.0, 0.0);
PoseVelocityBias poseVelocityBias = Combinedfactor.Predict(x1, v1, bias, Combined_pre_int_data, gravity, omegaCoriolis);
Pose3 expectedPose(Rot3(), Point3(0, 0.5, 0));
Vector3 expectedVelocity; expectedVelocity<<0,1,0;
EXPECT(assert_equal(expectedPose, poseVelocityBias.pose));
EXPECT(assert_equal(Vector(expectedVelocity), Vector(poseVelocityBias.velocity)));
}
TEST(CombinedImuFactor, PredictRotation) {
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot)
Matrix I6x6(6,6);
CombinedImuFactor::CombinedPreintegratedMeasurements Combined_pre_int_data(
bias, Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), Matrix3::Identity(), 2 * Matrix3::Identity(), I6x6, true );
Vector3 measuredAcc; measuredAcc << 0, 0, -9.81;
Vector3 gravity; gravity<<0,0,9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0,0,0;
Vector3 measuredOmega; measuredOmega << 0, 0, M_PI / 10.0;
double deltaT = 0.001;
double tol = 1e-4;
for (int i = 0; i < 1000; ++i)
Combined_pre_int_data.integrateMeasurement(measuredAcc, measuredOmega,
deltaT);
CombinedImuFactor Combinedfactor(X(1), V(1), X(2), V(2), B(1), B(2),
Combined_pre_int_data, gravity, omegaCoriolis);
// Predict
Pose3 x(Rot3().ypr(0,0, 0), Point3(0,0,0));
Vector3 v(0,0,0);
PoseVelocityBias poseVelocityBias = Combinedfactor.Predict(x,v,bias, Combined_pre_int_data, gravity, omegaCoriolis);
Pose3 expectedPose(Rot3().ypr(M_PI/10, 0,0), Point3(0,0,0));
EXPECT(assert_equal(expectedPose, poseVelocityBias.pose, tol));
}
#include <gtsam/linear/GaussianFactorGraph.h>

View File

@ -80,7 +80,7 @@ Vector3 evaluatePreintegratedMeasurementsPosition(
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaPij;
measuredAccs, measuredOmegas, deltaTs).deltaPij();
}
Vector3 evaluatePreintegratedMeasurementsVelocity(
@ -91,7 +91,7 @@ Vector3 evaluatePreintegratedMeasurementsVelocity(
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs).deltaVij;
measuredAccs, measuredOmegas, deltaTs).deltaVij();
}
Rot3 evaluatePreintegratedMeasurementsRotation(
@ -101,8 +101,8 @@ Rot3 evaluatePreintegratedMeasurementsRotation(
const list<double>& deltaTs,
const Vector3& initialRotationRate = Vector3(0.0,0.0,0.0) )
{
return evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs, initialRotationRate).deltaRij;
return Rot3(evaluatePreintegratedMeasurements(bias,
measuredAccs, measuredOmegas, deltaTs, initialRotationRate).deltaRij());
}
Rot3 evaluateRotation(const Vector3 measuredOmega, const Vector3 biasOmega, const double deltaT)
@ -140,10 +140,10 @@ TEST( ImuFactor, PreintegratedMeasurements )
ImuFactor::PreintegratedMeasurements actual1(bias, Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), use2ndOrderIntegration);
actual1.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
EXPECT(assert_equal(Vector(expectedDeltaP1), Vector(actual1.deltaPij), 1e-6));
EXPECT(assert_equal(Vector(expectedDeltaV1), Vector(actual1.deltaVij), 1e-6));
EXPECT(assert_equal(expectedDeltaR1, actual1.deltaRij, 1e-6));
DOUBLES_EQUAL(expectedDeltaT1, actual1.deltaTij, 1e-6);
EXPECT(assert_equal(Vector(expectedDeltaP1), Vector(actual1.deltaPij()), 1e-6));
EXPECT(assert_equal(Vector(expectedDeltaV1), Vector(actual1.deltaVij()), 1e-6));
EXPECT(assert_equal(expectedDeltaR1, Rot3(actual1.deltaRij()), 1e-6));
DOUBLES_EQUAL(expectedDeltaT1, actual1.deltaTij(), 1e-6);
// Integrate again
Vector3 expectedDeltaP2; expectedDeltaP2 << 0.025 + expectedDeltaP1(0) + 0.5*0.1*0.5*0.5, 0, 0;
@ -155,10 +155,10 @@ TEST( ImuFactor, PreintegratedMeasurements )
ImuFactor::PreintegratedMeasurements actual2 = actual1;
actual2.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
EXPECT(assert_equal(Vector(expectedDeltaP2), Vector(actual2.deltaPij), 1e-6));
EXPECT(assert_equal(Vector(expectedDeltaV2), Vector(actual2.deltaVij), 1e-6));
EXPECT(assert_equal(expectedDeltaR2, actual2.deltaRij, 1e-6));
DOUBLES_EQUAL(expectedDeltaT2, actual2.deltaTij, 1e-6);
EXPECT(assert_equal(Vector(expectedDeltaP2), Vector(actual2.deltaPij()), 1e-6));
EXPECT(assert_equal(Vector(expectedDeltaV2), Vector(actual2.deltaVij()), 1e-6));
EXPECT(assert_equal(expectedDeltaR2, Rot3(actual2.deltaRij()), 1e-6));
DOUBLES_EQUAL(expectedDeltaT2, actual2.deltaTij(), 1e-6);
}
/* ************************************************************************* */
@ -432,12 +432,12 @@ TEST( ImuFactor, FirstOrderPreIntegratedMeasurements )
Matrix expectedDelRdelBiasOmega = expectedDelRdelBias.rightCols(3);
// Compare Jacobians
EXPECT(assert_equal(expectedDelPdelBiasAcc, preintegrated.delPdelBiasAcc));
EXPECT(assert_equal(expectedDelPdelBiasOmega, preintegrated.delPdelBiasOmega));
EXPECT(assert_equal(expectedDelVdelBiasAcc, preintegrated.delVdelBiasAcc));
EXPECT(assert_equal(expectedDelVdelBiasOmega, preintegrated.delVdelBiasOmega));
EXPECT(assert_equal(expectedDelPdelBiasAcc, preintegrated.delPdelBiasAcc()));
EXPECT(assert_equal(expectedDelPdelBiasOmega, preintegrated.delPdelBiasOmega()));
EXPECT(assert_equal(expectedDelVdelBiasAcc, preintegrated.delVdelBiasAcc()));
EXPECT(assert_equal(expectedDelVdelBiasOmega, preintegrated.delVdelBiasOmega()));
EXPECT(assert_equal(expectedDelRdelBiasAcc, Matrix::Zero(3,3)));
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega, 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
EXPECT(assert_equal(expectedDelRdelBiasOmega, preintegrated.delRdelBiasOmega(), 1e-3)); // 1e-3 needs to be added only when using quaternions for rotations
}
//#include <gtsam/linear/GaussianFactorGraph.h>
@ -466,8 +466,8 @@ TEST( ImuFactor, FirstOrderPreIntegratedMeasurements )
// }
//
// // Create factor
// noiseModel::Base::shared_ptr model = noiseModel::Gaussian::Covariance(pre_int_data.preintegratedMeasurementsCovariance());
// ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis, model);
// noiseModel::Base::shared_ptr model = noiseModel::Gaussian::Covariance(pre_int_data.MeasurementCovariance());
// ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
//
// Values values;
// values.insert(X(1), x1);
@ -560,6 +560,71 @@ TEST( ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement )
EXPECT(assert_equal(H5e, H5a));
}
TEST(ImuFactor, PredictPositionAndVelocity){
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot)
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0, 0;
Vector3 measuredOmega; measuredOmega << 0, 0, 0;//M_PI/10.0+0.3;
Vector3 measuredAcc; measuredAcc << 0,1,-9.81;
double deltaT = 0.001;
double tol = 1e-6;
Matrix I6x6(6,6);
I6x6 = Matrix::Identity(6,6);
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), true);
for (int i = 0; i<1000; ++i) pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
// Predict
Pose3 x1;
Vector3 v1(0, 0.0, 0.0);
PoseVelocity poseVelocity = factor.Predict(x1, v1, bias, pre_int_data, gravity, omegaCoriolis);
Pose3 expectedPose(Rot3(), Point3(0, 0.5, 0));
Vector3 expectedVelocity; expectedVelocity<<0,1,0;
EXPECT(assert_equal(expectedPose, poseVelocity.pose));
EXPECT(assert_equal(Vector(expectedVelocity), Vector(poseVelocity.velocity)));
}
TEST(ImuFactor, PredictRotation) {
imuBias::ConstantBias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); // Biases (acc, rot)
// Measurements
Vector3 gravity; gravity << 0, 0, 9.81;
Vector3 omegaCoriolis; omegaCoriolis << 0, 0, 0;
Vector3 measuredOmega; measuredOmega << 0, 0, M_PI/10;//M_PI/10.0+0.3;
Vector3 measuredAcc; measuredAcc << 0,0,-9.81;
double deltaT = 0.001;
double tol = 1e-6;
Matrix I6x6(6,6);
I6x6 = Matrix::Identity(6,6);
ImuFactor::PreintegratedMeasurements pre_int_data(imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0),
Vector3(0.0, 0.0, 0.0)), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), true);
for (int i = 0; i<1000; ++i) pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
ImuFactor factor(X(1), V(1), X(2), V(2), B(1), pre_int_data, gravity, omegaCoriolis);
// Predict
Pose3 x1;
Vector3 v1(0, 0.0, 0.0);
PoseVelocity poseVelocity = factor.Predict(x1, v1, bias, pre_int_data, gravity, omegaCoriolis);
Pose3 expectedPose(Rot3().ypr(M_PI/10, 0, 0), Point3(0, 0, 0));
Vector3 expectedVelocity; expectedVelocity<<0,0,0;
EXPECT(assert_equal(expectedPose, poseVelocity.pose));
EXPECT(assert_equal(Vector(expectedVelocity), Vector(poseVelocity.velocity)));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}

View File

@ -303,4 +303,3 @@ int calculate_nnz(const boost::shared_ptr<CLIQUE>& clique) {
}