diff --git a/gtsam/linear/linear.i b/gtsam/linear/linear.i index 2bf55bba1..4b0963b8d 100644 --- a/gtsam/linear/linear.i +++ b/gtsam/linear/linear.i @@ -12,52 +12,52 @@ virtual class Base { // bool isConstrained() const; // bool isUnit() const; // size_t dim() const; - // Vector sigmas() const; + // gtsam::Vector sigmas() const; }; virtual class Gaussian : gtsam::noiseModel::Base { - static gtsam::noiseModel::Gaussian* Information(Matrix R, bool smart = true); - static gtsam::noiseModel::Gaussian* SqrtInformation(Matrix R, bool smart = true); - static gtsam::noiseModel::Gaussian* Covariance(Matrix R, bool smart = true); + static gtsam::noiseModel::Gaussian* Information(gtsam::Matrix R, bool smart = true); + static gtsam::noiseModel::Gaussian* SqrtInformation(gtsam::Matrix R, bool smart = true); + static gtsam::noiseModel::Gaussian* Covariance(gtsam::Matrix R, bool smart = true); bool equals(gtsam::noiseModel::Base& expected, double tol); // access to noise model - Matrix R() const; - Matrix information() const; - Matrix covariance() const; + gtsam::Matrix R() const; + gtsam::Matrix information() const; + gtsam::Matrix covariance() const; // Whitening operations - Vector whiten(Vector v) const; - Vector unwhiten(Vector v) const; - Matrix Whiten(Matrix H) const; + gtsam::Vector whiten(gtsam::Vector v) const; + gtsam::Vector unwhiten(gtsam::Vector v) const; + gtsam::Matrix Whiten(gtsam::Matrix H) const; // enabling serialization functionality void serializable() const; }; virtual class Diagonal : gtsam::noiseModel::Gaussian { - static gtsam::noiseModel::Diagonal* Sigmas(Vector sigmas, bool smart = true); - static gtsam::noiseModel::Diagonal* Variances(Vector variances, bool smart = true); - static gtsam::noiseModel::Diagonal* Precisions(Vector precisions, bool smart = true); - Matrix R() const; + static gtsam::noiseModel::Diagonal* Sigmas(gtsam::Vector sigmas, bool smart = true); + static gtsam::noiseModel::Diagonal* Variances(gtsam::Vector variances, bool smart = true); + static gtsam::noiseModel::Diagonal* Precisions(gtsam::Vector precisions, bool smart = true); + gtsam::Matrix R() const; // access to noise model - Vector sigmas() const; - Vector invsigmas() const; - Vector precisions() const; + gtsam::Vector sigmas() const; + gtsam::Vector invsigmas() const; + gtsam::Vector precisions() const; // enabling serialization functionality void serializable() const; }; virtual class Constrained : gtsam::noiseModel::Diagonal { - static gtsam::noiseModel::Constrained* MixedSigmas(Vector mu, Vector sigmas); - static gtsam::noiseModel::Constrained* MixedSigmas(double m, Vector sigmas); - static gtsam::noiseModel::Constrained* MixedVariances(Vector mu, Vector variances); - static gtsam::noiseModel::Constrained* MixedVariances(Vector variances); - static gtsam::noiseModel::Constrained* MixedPrecisions(Vector mu, Vector precisions); - static gtsam::noiseModel::Constrained* MixedPrecisions(Vector precisions); + static gtsam::noiseModel::Constrained* MixedSigmas(gtsam::Vector mu, gtsam::Vector sigmas); + static gtsam::noiseModel::Constrained* MixedSigmas(double m, gtsam::Vector sigmas); + static gtsam::noiseModel::Constrained* MixedVariances(gtsam::Vector mu, gtsam::Vector variances); + static gtsam::noiseModel::Constrained* MixedVariances(gtsam::Vector variances); + static gtsam::noiseModel::Constrained* MixedPrecisions(gtsam::Vector mu, gtsam::Vector precisions); + static gtsam::noiseModel::Constrained* MixedPrecisions(gtsam::Vector precisions); static gtsam::noiseModel::Constrained* All(size_t dim); static gtsam::noiseModel::Constrained* All(size_t dim, double mu); @@ -257,13 +257,13 @@ virtual class Robust : gtsam::noiseModel::Base { class Sampler { // Constructors Sampler(gtsam::noiseModel::Diagonal* model, int seed); - Sampler(Vector sigmas, int seed); + Sampler(gtsam::Vector sigmas, int seed); // Standard Interface size_t dim() const; - Vector sigmas() const; + gtsam::Vector sigmas() const; gtsam::noiseModel::Diagonal* model() const; - Vector sample(); + gtsam::Vector sample(); }; #include @@ -284,10 +284,10 @@ class VectorValues { const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter) const; bool equals(const gtsam::VectorValues& expected, double tol) const; - void insert(size_t j, Vector value); - Vector vector() const; - Vector vector(const gtsam::KeyVector& keys) const; - Vector at(size_t j) const; + void insert(size_t j, gtsam::Vector value); + gtsam::Vector vector() const; + gtsam::Vector vector(const gtsam::KeyVector& keys) const; + gtsam::Vector at(size_t j) const; void insert(const gtsam::VectorValues& values); void update(const gtsam::VectorValues& values); @@ -318,23 +318,23 @@ virtual class GaussianFactor : gtsam::Factor { double error(const gtsam::VectorValues& c) const; gtsam::GaussianFactor* clone() const; gtsam::GaussianFactor* negate() const; - Matrix augmentedInformation() const; - Matrix information() const; - Matrix augmentedJacobian() const; - pair jacobian() const; + gtsam::Matrix augmentedInformation() const; + gtsam::Matrix information() const; + gtsam::Matrix augmentedJacobian() const; + pair jacobian() const; }; #include virtual class JacobianFactor : gtsam::GaussianFactor { //Constructors JacobianFactor(); - JacobianFactor(Vector b_in); - JacobianFactor(size_t i1, Matrix A1, Vector b, + JacobianFactor(gtsam::Vector b_in); + JacobianFactor(size_t i1, gtsam::Matrix A1, gtsam::Vector b, const gtsam::noiseModel::Diagonal* model); - JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, Vector b, + JacobianFactor(size_t i1, gtsam::Matrix A1, size_t i2, gtsam::Matrix A2, gtsam::Vector b, const gtsam::noiseModel::Diagonal* model); - JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, size_t i3, Matrix A3, - Vector b, const gtsam::noiseModel::Diagonal* model); + JacobianFactor(size_t i1, gtsam::Matrix A1, size_t i2, gtsam::Matrix A2, size_t i3, gtsam::Matrix A3, + gtsam::Vector b, const gtsam::noiseModel::Diagonal* model); JacobianFactor(const gtsam::GaussianFactorGraph& graph); JacobianFactor(const gtsam::GaussianFactorGraph& graph, const gtsam::VariableSlots& p_variableSlots); @@ -349,25 +349,25 @@ virtual class JacobianFactor : gtsam::GaussianFactor { void print(string s = "", const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter) const; bool equals(const gtsam::GaussianFactor& lf, double tol) const; - Vector unweighted_error(const gtsam::VectorValues& c) const; - Vector error_vector(const gtsam::VectorValues& c) const; + gtsam::Vector unweighted_error(const gtsam::VectorValues& c) const; + gtsam::Vector error_vector(const gtsam::VectorValues& c) const; double error(const gtsam::VectorValues& c) const; //Standard Interface - Matrix getA() const; - Vector getb() const; + gtsam::Matrix getA() const; + gtsam::Vector getb() const; size_t rows() const; size_t cols() const; bool isConstrained() const; - pair jacobianUnweighted() const; - Matrix augmentedJacobianUnweighted() const; + pair jacobianUnweighted() const; + gtsam::Matrix augmentedJacobianUnweighted() const; - void transposeMultiplyAdd(double alpha, Vector e, gtsam::VectorValues& x) const; + void transposeMultiplyAdd(double alpha, gtsam::Vector e, gtsam::VectorValues& x) const; gtsam::JacobianFactor whiten() const; pair eliminate(const gtsam::Ordering& keys) const; - void setModel(bool anyConstrained, Vector sigmas); + void setModel(bool anyConstrained, gtsam::Vector sigmas); gtsam::noiseModel::Diagonal* get_model() const; @@ -382,12 +382,12 @@ virtual class HessianFactor : gtsam::GaussianFactor { //Constructors HessianFactor(); HessianFactor(const gtsam::GaussianFactor& factor); - HessianFactor(size_t j, Matrix G, Vector g, double f); - HessianFactor(size_t j, Vector mu, Matrix Sigma); - HessianFactor(size_t j1, size_t j2, Matrix G11, Matrix G12, Vector g1, Matrix G22, - Vector g2, double f); - HessianFactor(size_t j1, size_t j2, size_t j3, Matrix G11, Matrix G12, Matrix G13, - Vector g1, Matrix G22, Matrix G23, Vector g2, Matrix G33, Vector g3, + HessianFactor(size_t j, gtsam::Matrix G, gtsam::Vector g, double f); + HessianFactor(size_t j, gtsam::Vector mu, gtsam::Matrix Sigma); + HessianFactor(size_t j1, size_t j2, gtsam::Matrix G11, gtsam::Matrix G12, gtsam::Vector g1, gtsam::Matrix G22, + gtsam::Vector g2, double f); + HessianFactor(size_t j1, size_t j2, size_t j3, gtsam::Matrix G11, gtsam::Matrix G12, gtsam::Matrix G13, + gtsam::Vector g1, gtsam::Matrix G22, gtsam::Matrix G23, gtsam::Vector g2, gtsam::Matrix G33, gtsam::Vector g3, double f); HessianFactor(const gtsam::GaussianFactorGraph& factors); @@ -399,9 +399,9 @@ virtual class HessianFactor : gtsam::GaussianFactor { //Standard Interface size_t rows() const; - Matrix information() const; + gtsam::Matrix information() const; double constantTerm() const; - Vector linearTerm() const; + gtsam::Vector linearTerm() const; // enabling serialization functionality void serialize() const; @@ -430,12 +430,12 @@ class GaussianFactorGraph { void push_back(const gtsam::GaussianBayesNet& bayesNet); void push_back(const gtsam::GaussianBayesTree& bayesTree); void add(const gtsam::GaussianFactor& factor); - void add(Vector b); - void add(size_t key1, Matrix A1, Vector b, const gtsam::noiseModel::Diagonal* model); - void add(size_t key1, Matrix A1, size_t key2, Matrix A2, Vector b, + void add(gtsam::Vector b); + void add(size_t key1, gtsam::Matrix A1, gtsam::Vector b, const gtsam::noiseModel::Diagonal* model); + void add(size_t key1, gtsam::Matrix A1, size_t key2, gtsam::Matrix A2, gtsam::Vector b, const gtsam::noiseModel::Diagonal* model); - void add(size_t key1, Matrix A1, size_t key2, Matrix A2, size_t key3, Matrix A3, - Vector b, const gtsam::noiseModel::Diagonal* model); + void add(size_t key1, gtsam::Matrix A1, size_t key2, gtsam::Matrix A2, size_t key3, gtsam::Matrix A3, + gtsam::Vector b, const gtsam::noiseModel::Diagonal* model); // error and probability double error(const gtsam::VectorValues& c) const; @@ -477,15 +477,15 @@ class GaussianFactorGraph { gtsam::GaussianFactorGraph* marginal(const gtsam::KeyVector& key_vector); // Conversion to matrices - Matrix sparseJacobian_() const; - Matrix augmentedJacobian() const; - Matrix augmentedJacobian(const gtsam::Ordering& ordering) const; - pair jacobian() const; - pair jacobian(const gtsam::Ordering& ordering) const; - Matrix augmentedHessian() const; - Matrix augmentedHessian(const gtsam::Ordering& ordering) const; - pair hessian() const; - pair hessian(const gtsam::Ordering& ordering) const; + gtsam::Matrix sparseJacobian_() const; + gtsam::Matrix augmentedJacobian() const; + gtsam::Matrix augmentedJacobian(const gtsam::Ordering& ordering) const; + pair jacobian() const; + pair jacobian(const gtsam::Ordering& ordering) const; + gtsam::Matrix augmentedHessian() const; + gtsam::Matrix augmentedHessian(const gtsam::Ordering& ordering) const; + pair hessian() const; + pair hessian(const gtsam::Ordering& ordering) const; string dot( const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter, @@ -503,37 +503,37 @@ class GaussianFactorGraph { #include virtual class GaussianConditional : gtsam::JacobianFactor { // Constructors - GaussianConditional(size_t key, Vector d, Matrix R, + GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R, const gtsam::noiseModel::Diagonal* sigmas); - GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S, + GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R, size_t name1, gtsam::Matrix S, const gtsam::noiseModel::Diagonal* sigmas); - GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S, - size_t name2, Matrix T, + GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R, size_t name1, gtsam::Matrix S, + size_t name2, gtsam::Matrix T, const gtsam::noiseModel::Diagonal* sigmas); // Constructors with no noise model - GaussianConditional(size_t key, Vector d, Matrix R); - GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S); - GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S, - size_t name2, Matrix T); + GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R); + GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R, size_t name1, gtsam::Matrix S); + GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R, size_t name1, gtsam::Matrix S, + size_t name2, gtsam::Matrix T); // Named constructors static gtsam::GaussianConditional FromMeanAndStddev(gtsam::Key key, - const Vector& mu, + const gtsam::Vector& mu, double sigma); static gtsam::GaussianConditional FromMeanAndStddev(gtsam::Key key, - const Matrix& A, + const gtsam::Matrix& A, gtsam::Key parent, - const Vector& b, + const gtsam::Vector& b, double sigma); static gtsam::GaussianConditional FromMeanAndStddev(gtsam::Key key, - const Matrix& A1, + const gtsam::Matrix& A1, gtsam::Key parent1, - const Matrix& A2, + const gtsam::Matrix& A2, gtsam::Key parent2, - const Vector& b, + const gtsam::Vector& b, double sigma); // Testable void print(string s = "GaussianConditional", @@ -550,7 +550,7 @@ virtual class GaussianConditional : gtsam::JacobianFactor { gtsam::VectorValues solve(const gtsam::VectorValues& parents) const; gtsam::JacobianFactor* likelihood( const gtsam::VectorValues& frontalValues) const; - gtsam::JacobianFactor* likelihood(Vector frontal) const; + gtsam::JacobianFactor* likelihood(gtsam::Vector frontal) const; gtsam::VectorValues sample(const gtsam::VectorValues& parents) const; gtsam::VectorValues sample() const; @@ -558,9 +558,9 @@ virtual class GaussianConditional : gtsam::JacobianFactor { gtsam::VectorValues solveOtherRHS(const gtsam::VectorValues& parents, const gtsam::VectorValues& rhs) const; void solveTransposeInPlace(gtsam::VectorValues& gy) const; - Matrix R() const; - Matrix S() const; - Vector d() const; + gtsam::Matrix R() const; + gtsam::Matrix S() const; + gtsam::Vector d() const; // enabling serialization functionality void serialize() const; @@ -574,11 +574,11 @@ virtual class GaussianConditional : gtsam::JacobianFactor { #include virtual class GaussianDensity : gtsam::GaussianConditional { // Constructors - GaussianDensity(gtsam::Key key, Vector d, Matrix R, + GaussianDensity(gtsam::Key key, gtsam::Vector d, gtsam::Matrix R, const gtsam::noiseModel::Diagonal* sigmas); static gtsam::GaussianDensity FromMeanAndStddev(gtsam::Key key, - const Vector& mean, + const gtsam::Vector& mean, double sigma); // Testable @@ -588,8 +588,8 @@ virtual class GaussianDensity : gtsam::GaussianConditional { bool equals(const gtsam::GaussianDensity& cg, double tol) const; // Standard Interface - Vector mean() const; - Matrix covariance() const; + gtsam::Vector mean() const; + gtsam::Matrix covariance() const; }; #include @@ -632,7 +632,7 @@ virtual class GaussianBayesNet { void saveGraph(const string& s) const; - std::pair matrix() const; + std::pair matrix() const; gtsam::VectorValues gradient(const gtsam::VectorValues& x0) const; gtsam::VectorValues gradientAtZero() const; double error(const gtsam::VectorValues& x) const; @@ -673,7 +673,7 @@ virtual class GaussianBayesTree { double error(const gtsam::VectorValues& x) const; double determinant() const; double logDeterminant() const; - Matrix marginalCovariance(size_t key) const; + gtsam::Matrix marginalCovariance(size_t key) const; gtsam::GaussianConditional* marginalFactor(size_t key) const; gtsam::GaussianFactorGraph* joint(size_t key1, size_t key2) const; gtsam::GaussianBayesNet* jointBayesNet(size_t key1, size_t key2) const; @@ -751,20 +751,20 @@ virtual class SubgraphSolver { #include class KalmanFilter { KalmanFilter(size_t n); - // gtsam::GaussianDensity* init(Vector x0, const gtsam::SharedDiagonal& P0); - gtsam::GaussianDensity* init(Vector x0, Matrix P0); + // gtsam::GaussianDensity* init(gtsam::Vector x0, const gtsam::SharedDiagonal& P0); + gtsam::GaussianDensity* init(gtsam::Vector x0, gtsam::Matrix P0); void print(string s = "") const; static size_t step(gtsam::GaussianDensity* p); - gtsam::GaussianDensity* predict(gtsam::GaussianDensity* p, Matrix F, - Matrix B, Vector u, const gtsam::noiseModel::Diagonal* modelQ); - gtsam::GaussianDensity* predictQ(gtsam::GaussianDensity* p, Matrix F, - Matrix B, Vector u, Matrix Q); - gtsam::GaussianDensity* predict2(gtsam::GaussianDensity* p, Matrix A0, - Matrix A1, Vector b, const gtsam::noiseModel::Diagonal* model); - gtsam::GaussianDensity* update(gtsam::GaussianDensity* p, Matrix H, - Vector z, const gtsam::noiseModel::Diagonal* model); - gtsam::GaussianDensity* updateQ(gtsam::GaussianDensity* p, Matrix H, - Vector z, Matrix Q); + gtsam::GaussianDensity* predict(gtsam::GaussianDensity* p, gtsam::Matrix F, + gtsam::Matrix B, gtsam::Vector u, const gtsam::noiseModel::Diagonal* modelQ); + gtsam::GaussianDensity* predictQ(gtsam::GaussianDensity* p, gtsam::Matrix F, + gtsam::Matrix B, gtsam::Vector u, gtsam::Matrix Q); + gtsam::GaussianDensity* predict2(gtsam::GaussianDensity* p, gtsam::Matrix A0, + gtsam::Matrix A1, gtsam::Vector b, const gtsam::noiseModel::Diagonal* model); + gtsam::GaussianDensity* update(gtsam::GaussianDensity* p, gtsam::Matrix H, + gtsam::Vector z, const gtsam::noiseModel::Diagonal* model); + gtsam::GaussianDensity* updateQ(gtsam::GaussianDensity* p, gtsam::Matrix H, + gtsam::Vector z, gtsam::Matrix Q); }; } \ No newline at end of file