undo CustomFactor changes
parent
a1d6ca207a
commit
b60c5e3ab5
|
@ -44,20 +44,14 @@ Vector CustomFactor::unwhitenedError(
|
|||
* return error
|
||||
* ```
|
||||
*/
|
||||
std::pair<Vector, JacobianVector> errorAndJacobian =
|
||||
this->error_function_(*this, x, H.get_ptr());
|
||||
return this->error_function_(*this, x, H.get_ptr());
|
||||
|
||||
Vector error = errorAndJacobian.first;
|
||||
(*H) = errorAndJacobian.second;
|
||||
|
||||
return error;
|
||||
} else {
|
||||
/*
|
||||
* In this case, we pass the a `nullptr` to pybind, and it will translate to `None` in Python.
|
||||
* Users can check for `None` in their callback to determine if the Jacobian is requested.
|
||||
*/
|
||||
auto errorAndJacobian = this->error_function_(*this, x, nullptr);
|
||||
return errorAndJacobian.first;
|
||||
return this->error_function_(*this, x, nullptr);
|
||||
}
|
||||
} else {
|
||||
return Vector::Zero(this->dim());
|
||||
|
|
|
@ -35,8 +35,7 @@ class CustomFactor;
|
|||
* This is safe because this is passing a const pointer, and pybind11 will maintain the `std::vector` memory layout.
|
||||
* Thus the pointer will never be invalidated.
|
||||
*/
|
||||
using CustomErrorFunction = std::function<std::pair<Vector, JacobianVector>(
|
||||
const CustomFactor &, const Values &, JacobianVector *)>;
|
||||
using CustomErrorFunction = std::function<Vector(const CustomFactor &, const Values &, const JacobianVector *)>;
|
||||
|
||||
/**
|
||||
* @brief Custom factor that takes a std::function as the error
|
||||
|
@ -78,7 +77,7 @@ public:
|
|||
* Calls the errorFunction closure, which is a std::function object
|
||||
* One can check if a derivative is needed in the errorFunction by checking the length of Jacobian array
|
||||
*/
|
||||
Vector unwhitenedError(const Values &x, boost::optional<std::vector<Matrix>&> H = boost::none) const override;
|
||||
Vector unwhitenedError(const Values &x, boost::optional<std::vector<Matrix> &> H = boost::none) const override;
|
||||
|
||||
/** print */
|
||||
void print(const std::string &s,
|
||||
|
|
|
@ -33,7 +33,7 @@ class TestCustomFactor(GtsamTestCase):
|
|||
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
|
||||
"""Minimal error function stub"""
|
||||
return np.array([1, 0, 0]), H
|
||||
return np.array([1, 0, 0])
|
||||
|
||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
||||
cf = CustomFactor(noise_model, [0], error_func)
|
||||
|
@ -46,7 +46,7 @@ class TestCustomFactor(GtsamTestCase):
|
|||
"""Minimal error function with no Jacobian"""
|
||||
key0 = this.keys()[0]
|
||||
error = -v.atPose2(key0).localCoordinates(expected_pose)
|
||||
return error, H
|
||||
return error
|
||||
|
||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
||||
cf = CustomFactor(noise_model, [0], error_func)
|
||||
|
@ -80,7 +80,7 @@ class TestCustomFactor(GtsamTestCase):
|
|||
result = gT1.between(gT2)
|
||||
H[0] = -result.inverse().AdjointMap()
|
||||
H[1] = np.eye(3)
|
||||
return error, H
|
||||
return error
|
||||
|
||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
||||
cf = CustomFactor(noise_model, [0, 1], error_func)
|
||||
|
@ -103,9 +103,9 @@ class TestCustomFactor(GtsamTestCase):
|
|||
gT1 = Pose2(1, 2, np.pi / 2)
|
||||
gT2 = Pose2(-1, 4, np.pi)
|
||||
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, H: List[np.ndarray]):
|
||||
def error_func(this: CustomFactor, v: gtsam.Values, _: List[np.ndarray]):
|
||||
"""Minimal error function stub"""
|
||||
return np.array([1, 0, 0]), H
|
||||
return np.array([1, 0, 0])
|
||||
|
||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
||||
from gtsam.symbol_shorthand import X
|
||||
|
@ -143,7 +143,7 @@ class TestCustomFactor(GtsamTestCase):
|
|||
result = gT1.between(gT2)
|
||||
H[0] = -result.inverse().AdjointMap()
|
||||
H[1] = np.eye(3)
|
||||
return error, H
|
||||
return error
|
||||
|
||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
||||
cf = CustomFactor(noise_model, [0, 1], error_func)
|
||||
|
@ -181,7 +181,7 @@ class TestCustomFactor(GtsamTestCase):
|
|||
result = gT1.between(gT2)
|
||||
H[0] = -result.inverse().AdjointMap()
|
||||
H[1] = np.eye(3)
|
||||
return error, H
|
||||
return error
|
||||
|
||||
noise_model = gtsam.noiseModel.Unit.Create(3)
|
||||
cf = CustomFactor(noise_model, [0, 1], error_func)
|
||||
|
|
Loading…
Reference in New Issue