starting to create test and code for gncParams

release/4.3a0
lcarlone 2020-11-25 20:11:04 -05:00
parent 7e29944f95
commit b5d06b5878
1 changed files with 57 additions and 48 deletions

View File

@ -12,7 +12,7 @@
/**
* @file testGncOptimizer.cpp
* @brief Unit tests for GncOptimizer class
* @author Jignnan Shi
* @author Jingnan Shi
* @author Luca Carlone
* @author Frank Dellaert
*/
@ -21,12 +21,21 @@
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <tests/smallExample.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using symbol_shorthand::X;
using symbol_shorthand::L;
/* ************************************************************************* */
template <class BaseOptimizerParameters>
class GncParams {
using BaseOptimizer = BaseOptimizerParameters::OptimizerType;
GncParams(const BaseOptimizerParameters& baseOptimizerParams)
: baseOptimizerParams(baseOptimizerParams) {}
public:
// using BaseOptimizer = BaseOptimizerParameters::OptimizerType;
GncParams(const BaseOptimizerParameters& baseOptimizerParams): baseOptimizerParams(baseOptimizerParams) {}
BaseOptimizerParameters baseOptimizerParams;
@ -34,64 +43,64 @@ class GncParams {
};
/* ************************************************************************* */
template <class GncParameters>
class GncOptimizer {
public:
// types etc
//template <class GncParameters>
//class GncOptimizer {
// public:
// // types etc
//
// private:
// FG INITIAL GncParameters params_;
//
// public:
// GncOptimizer(FG, INITIAL, const GncParameters& params) : params(params) {
// // Check that all noise models are Gaussian
// }
//
// Values optimize() const {
// NonlinearFactorGraph currentGraph = graph_;
// for (i : {1, 2, 3}) {
// BaseOptimizer::Optimizer baseOptimizer(currentGraph, initial);
// VALUES currentSolution = baseOptimizer.optimize();
// if (converged) {
// return currentSolution;
// }
// graph_i = this->makeGraph(currentSolution);
// }
// }
//
// NonlinearFactorGraph makeGraph(const Values& currentSolution) const {
// // calculate some weights
// this->calculateWeights();
// // copy the graph with new weights
//
// }
//};
private:
FG INITIAL GncParameters params_;
public:
GncOptimizer(FG, INITIAL, const GncParameters& params) : params(params) {
// Check that all noise models are Gaussian
}
Values optimize() const {
NonlinearFactorGraph currentGraph = graph_;
for (i : {1, 2, 3}) {
BaseOptimizer::Optimizer baseOptimizer(currentGraph, initial);
VALUES currentSolution = baseOptimizer.optimize();
if (converged) {
return currentSolution;
}
graph_i = this->makeGraph(currentSolution);
}
}
NonlinearFactorGraph makeGraph(const Values& currentSolution) const {
// calculate some weights
this->calculateWeights();
// copy the graph with new weights
}
};
/* ************************************************************************* */
TEST(GncOptimizer, calculateWeights) {
}
/* ************************************************************************* */
TEST(GncOptimizer, copyGraph) {
}
///* ************************************************************************* */
//TEST(GncOptimizer, calculateWeights) {
//}
//
///* ************************************************************************* */
//TEST(GncOptimizer, copyGraph) {
//}
/* ************************************************************************* */
TEST(GncOptimizer, makeGraph) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams gncParams(lmParams);
auto gnc = GncOptimizer(fg, initial, gncParams);
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
// auto gnc = GncOptimizer(fg, initial, gncParams);
NonlinearFactorGraph actual = gnc.makeGraph(initial);
// NonlinearFactorGraph actual = gnc.makeGraph(initial);
}
/* ************************************************************************* */
/* ************************************************************************* *
TEST(GncOptimizer, optimize) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();