starting to create test and code for gncParams
parent
7e29944f95
commit
b5d06b5878
|
@ -12,7 +12,7 @@
|
|||
/**
|
||||
* @file testGncOptimizer.cpp
|
||||
* @brief Unit tests for GncOptimizer class
|
||||
* @author Jignnan Shi
|
||||
* @author Jingnan Shi
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
@ -21,12 +21,21 @@
|
|||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <tests/smallExample.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::L;
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class BaseOptimizerParameters>
|
||||
class GncParams {
|
||||
using BaseOptimizer = BaseOptimizerParameters::OptimizerType;
|
||||
GncParams(const BaseOptimizerParameters& baseOptimizerParams)
|
||||
: baseOptimizerParams(baseOptimizerParams) {}
|
||||
public:
|
||||
|
||||
// using BaseOptimizer = BaseOptimizerParameters::OptimizerType;
|
||||
GncParams(const BaseOptimizerParameters& baseOptimizerParams): baseOptimizerParams(baseOptimizerParams) {}
|
||||
|
||||
BaseOptimizerParameters baseOptimizerParams;
|
||||
|
||||
|
@ -34,64 +43,64 @@ class GncParams {
|
|||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class GncParameters>
|
||||
class GncOptimizer {
|
||||
public:
|
||||
// types etc
|
||||
//template <class GncParameters>
|
||||
//class GncOptimizer {
|
||||
// public:
|
||||
// // types etc
|
||||
//
|
||||
// private:
|
||||
// FG INITIAL GncParameters params_;
|
||||
//
|
||||
// public:
|
||||
// GncOptimizer(FG, INITIAL, const GncParameters& params) : params(params) {
|
||||
// // Check that all noise models are Gaussian
|
||||
// }
|
||||
//
|
||||
// Values optimize() const {
|
||||
// NonlinearFactorGraph currentGraph = graph_;
|
||||
// for (i : {1, 2, 3}) {
|
||||
// BaseOptimizer::Optimizer baseOptimizer(currentGraph, initial);
|
||||
// VALUES currentSolution = baseOptimizer.optimize();
|
||||
// if (converged) {
|
||||
// return currentSolution;
|
||||
// }
|
||||
// graph_i = this->makeGraph(currentSolution);
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// NonlinearFactorGraph makeGraph(const Values& currentSolution) const {
|
||||
// // calculate some weights
|
||||
// this->calculateWeights();
|
||||
// // copy the graph with new weights
|
||||
//
|
||||
// }
|
||||
//};
|
||||
|
||||
private:
|
||||
FG INITIAL GncParameters params_;
|
||||
|
||||
public:
|
||||
GncOptimizer(FG, INITIAL, const GncParameters& params) : params(params) {
|
||||
// Check that all noise models are Gaussian
|
||||
}
|
||||
|
||||
Values optimize() const {
|
||||
NonlinearFactorGraph currentGraph = graph_;
|
||||
for (i : {1, 2, 3}) {
|
||||
BaseOptimizer::Optimizer baseOptimizer(currentGraph, initial);
|
||||
VALUES currentSolution = baseOptimizer.optimize();
|
||||
if (converged) {
|
||||
return currentSolution;
|
||||
}
|
||||
graph_i = this->makeGraph(currentSolution);
|
||||
}
|
||||
}
|
||||
|
||||
NonlinearFactorGraph makeGraph(const Values& currentSolution) const {
|
||||
// calculate some weights
|
||||
this->calculateWeights();
|
||||
// copy the graph with new weights
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, calculateWeights) {
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, copyGraph) {
|
||||
}
|
||||
///* ************************************************************************* */
|
||||
//TEST(GncOptimizer, calculateWeights) {
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST(GncOptimizer, copyGraph) {
|
||||
//}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, makeGraph) {
|
||||
// has to have Gaussian noise models !
|
||||
auto fg = example::createReallyNonlinearFactorGraph();
|
||||
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
|
||||
|
||||
Point2 p0(3, 3);
|
||||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams gncParams(lmParams);
|
||||
auto gnc = GncOptimizer(fg, initial, gncParams);
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
// auto gnc = GncOptimizer(fg, initial, gncParams);
|
||||
|
||||
NonlinearFactorGraph actual = gnc.makeGraph(initial);
|
||||
// NonlinearFactorGraph actual = gnc.makeGraph(initial);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/* ************************************************************************* *
|
||||
TEST(GncOptimizer, optimize) {
|
||||
// has to have Gaussian noise models !
|
||||
auto fg = example::createReallyNonlinearFactorGraph();
|
||||
|
|
Loading…
Reference in New Issue