update all the matlab tests to add missing arguments
parent
04c2f80877
commit
b5bf0ca537
|
@ -12,11 +12,11 @@ end
|
|||
isam = ISAM2(params);
|
||||
|
||||
%% Set Noise parameters
|
||||
noiseModels.pose = noiseModel.Diagonal.Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
|
||||
noiseModels.pose = noiseModel.Diagonal.Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]', true);
|
||||
%noiseModels.odometry = noiseModel.Diagonal.Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
|
||||
noiseModels.odometry = noiseModel.Diagonal.Sigmas([0.05 0.05 0.05 0.2 0.2 0.2]');
|
||||
noiseModels.point = noiseModel.Isotropic.Sigma(3, 0.1);
|
||||
noiseModels.measurement = noiseModel.Isotropic.Sigma(2, 1.0);
|
||||
noiseModels.odometry = noiseModel.Diagonal.Sigmas([0.05 0.05 0.05 0.2 0.2 0.2]', true);
|
||||
noiseModels.point = noiseModel.Isotropic.Sigma(3, 0.1, true);
|
||||
noiseModels.measurement = noiseModel.Isotropic.Sigma(2, 1.0, true);
|
||||
|
||||
%% Add constraints/priors
|
||||
% TODO: should not be from ground truth!
|
||||
|
|
|
@ -32,7 +32,7 @@ x1 = 3;
|
|||
% the RHS
|
||||
b2=[-1;1.5;2;-1];
|
||||
sigmas = [1;1;1;1];
|
||||
model4 = noiseModel.Diagonal.Sigmas(sigmas);
|
||||
model4 = noiseModel.Diagonal.Sigmas(sigmas, true);
|
||||
combined = JacobianFactor(x2, Ax2, l1, Al1, x1, Ax1, b2, model4);
|
||||
|
||||
% eliminate the first variable (x2) in the combined factor, destructive !
|
||||
|
@ -74,7 +74,7 @@ Bx1 = [
|
|||
% the RHS
|
||||
b1= [0.0;0.894427];
|
||||
|
||||
model2 = noiseModel.Diagonal.Sigmas([1;1]);
|
||||
model2 = noiseModel.Diagonal.Sigmas([1;1], true);
|
||||
expectedLF = JacobianFactor(l1, Bl1, x1, Bx1, b1, model2);
|
||||
|
||||
% check if the result matches the combined (reduced) factor
|
||||
|
|
|
@ -23,13 +23,13 @@ import gtsam.*
|
|||
F = eye(2,2);
|
||||
B = eye(2,2);
|
||||
u = [1.0; 0.0];
|
||||
modelQ = noiseModel.Diagonal.Sigmas([0.1;0.1]);
|
||||
modelQ = noiseModel.Diagonal.Sigmas([0.1;0.1], true);
|
||||
Q = 0.01*eye(2,2);
|
||||
H = eye(2,2);
|
||||
z1 = [1.0, 0.0]';
|
||||
z2 = [2.0, 0.0]';
|
||||
z3 = [3.0, 0.0]';
|
||||
modelR = noiseModel.Diagonal.Sigmas([0.1;0.1]);
|
||||
modelR = noiseModel.Diagonal.Sigmas([0.1;0.1], true);
|
||||
R = 0.01*eye(2,2);
|
||||
|
||||
%% Create the set of expected output TestValues
|
||||
|
|
|
@ -17,7 +17,7 @@ graph = NonlinearFactorGraph;
|
|||
|
||||
%% Add two odometry factors
|
||||
odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1], true); % 20cm std on x,y, 0.1 rad on theta
|
||||
graph.add(BetweenFactorPose2(1, 2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactorPose2(2, 3, odometry, odometryNoise));
|
||||
|
||||
|
@ -27,7 +27,7 @@ groundTruth = Values;
|
|||
groundTruth.insert(1, Pose2(0.0, 0.0, 0.0));
|
||||
groundTruth.insert(2, Pose2(2.0, 0.0, 0.0));
|
||||
groundTruth.insert(3, Pose2(4.0, 0.0, 0.0));
|
||||
model = noiseModel.Diagonal.Sigmas([0.1; 0.1; 10]);
|
||||
model = noiseModel.Diagonal.Sigmas([0.1; 0.1; 10], true);
|
||||
for i=1:3
|
||||
graph.add(PriorFactorPose2(i, groundTruth.atPose2(i), model));
|
||||
end
|
||||
|
|
|
@ -17,12 +17,12 @@ graph = NonlinearFactorGraph;
|
|||
|
||||
%% Add a Gaussian prior on pose x_1
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); % 30cm std on x,y, 0.1 rad on theta
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1], true); % 30cm std on x,y, 0.1 rad on theta
|
||||
graph.add(PriorFactorPose2(1, priorMean, priorNoise)); % add directly to graph
|
||||
|
||||
%% Add two odometry factors
|
||||
odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1], true); % 20cm std on x,y, 0.1 rad on theta
|
||||
graph.add(BetweenFactorPose2(1, 2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactorPose2(2, 3, odometry, odometryNoise));
|
||||
|
||||
|
|
|
@ -30,18 +30,18 @@ graph = NonlinearFactorGraph;
|
|||
|
||||
%% Add prior
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1], true);
|
||||
graph.add(PriorFactorPose2(i1, priorMean, priorNoise)); % add directly to graph
|
||||
|
||||
%% Add odometry
|
||||
odometry = Pose2(2.0, 0.0, 0.0);
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1], true);
|
||||
graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise));
|
||||
|
||||
%% Add bearing/range measurement factors
|
||||
degrees = pi/180;
|
||||
brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
|
||||
brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2], true);
|
||||
graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise));
|
||||
graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise));
|
||||
graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise));
|
||||
|
|
|
@ -26,19 +26,19 @@ graph = NonlinearFactorGraph;
|
|||
%% Add prior
|
||||
% gaussian for prior
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1], true);
|
||||
graph.add(PriorFactorPose2(1, priorMean, priorNoise)); % add directly to graph
|
||||
|
||||
%% Add odometry
|
||||
% general noisemodel for odometry
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1], true);
|
||||
graph.add(BetweenFactorPose2(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise));
|
||||
graph.add(BetweenFactorPose2(2, 3, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
||||
graph.add(BetweenFactorPose2(3, 4, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
||||
graph.add(BetweenFactorPose2(4, 5, Pose2(2.0, 0.0, pi/2), odometryNoise));
|
||||
|
||||
%% Add pose constraint
|
||||
model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1], true);
|
||||
graph.add(BetweenFactorPose2(5, 2, Pose2(2.0, 0.0, pi/2), model));
|
||||
|
||||
%% Initialize to noisy points
|
||||
|
|
|
@ -21,7 +21,7 @@ p1 = hexagon.atPose3(1);
|
|||
fg = NonlinearFactorGraph;
|
||||
fg.add(NonlinearEqualityPose3(0, p0));
|
||||
delta = p0.between(p1);
|
||||
covariance = noiseModel.Diagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180]);
|
||||
covariance = noiseModel.Diagonal.Sigmas([0.05; 0.05; 0.05; 5*pi/180; 5*pi/180; 5*pi/180], true);
|
||||
fg.add(BetweenFactorPose3(0,1, delta, covariance));
|
||||
fg.add(BetweenFactorPose3(1,2, delta, covariance));
|
||||
fg.add(BetweenFactorPose3(2,3, delta, covariance));
|
||||
|
|
|
@ -25,7 +25,7 @@ poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
|
|||
graph = NonlinearFactorGraph;
|
||||
|
||||
%% Add factors for all measurements
|
||||
measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma);
|
||||
measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma, true);
|
||||
for i=1:length(data.Z)
|
||||
for k=1:length(data.Z{i})
|
||||
j = data.J{i}{k};
|
||||
|
@ -33,9 +33,9 @@ for i=1:length(data.Z)
|
|||
end
|
||||
end
|
||||
|
||||
posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
|
||||
posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas, true);
|
||||
graph.add(PriorFactorPose3(symbol('x',1), truth.cameras{1}.pose, posePriorNoise));
|
||||
pointPriorNoise = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
|
||||
pointPriorNoise = noiseModel.Isotropic.Sigma(3,pointNoiseSigma, true);
|
||||
graph.add(PriorFactorPoint3(symbol('p',1), truth.points{1}, pointPriorNoise));
|
||||
|
||||
%% Initial estimate
|
||||
|
|
|
@ -45,30 +45,30 @@ graph = NonlinearFactorGraph;
|
|||
|
||||
% Prior factor
|
||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
|
||||
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1], true);
|
||||
graph.add(PriorFactorPose2(i1, priorMean, priorNoise)); % add directly to graph
|
||||
|
||||
% Between Factors
|
||||
odometry = Pose2(2.0, 0.0, 0.0);
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
|
||||
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1], true);
|
||||
graph.add(BetweenFactorPose2(i1, i2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactorPose2(i2, i3, odometry, odometryNoise));
|
||||
|
||||
% Range Factors
|
||||
rNoise = noiseModel.Diagonal.Sigmas([0.2]);
|
||||
rNoise = noiseModel.Diagonal.Sigmas([0.2], true);
|
||||
graph.add(RangeFactor2D(i1, j1, sqrt(4+4), rNoise));
|
||||
graph.add(RangeFactor2D(i2, j1, 2, rNoise));
|
||||
graph.add(RangeFactor2D(i3, j2, 2, rNoise));
|
||||
|
||||
% Bearing Factors
|
||||
degrees = pi/180;
|
||||
bNoise = noiseModel.Diagonal.Sigmas([0.1]);
|
||||
bNoise = noiseModel.Diagonal.Sigmas([0.1], true);
|
||||
graph.add(BearingFactor2D(i1, j1, Rot2(45*degrees), bNoise));
|
||||
graph.add(BearingFactor2D(i2, j1, Rot2(90*degrees), bNoise));
|
||||
graph.add(BearingFactor2D(i3, j2, Rot2(90*degrees), bNoise));
|
||||
|
||||
% BearingRange Factors
|
||||
brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
|
||||
brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2], true);
|
||||
graph.add(BearingRangeFactor2D(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise));
|
||||
graph.add(BearingRangeFactor2D(i2, j1, Rot2(90*degrees), 2, brNoise));
|
||||
graph.add(BearingRangeFactor2D(i3, j2, Rot2(90*degrees), 2, brNoise));
|
||||
|
|
|
@ -33,7 +33,7 @@ graph.add(NonlinearEqualityPose3(x1, first_pose));
|
|||
%% Create realistic calibration and measurement noise model
|
||||
% format: fx fy skew cx cy baseline
|
||||
K = Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2);
|
||||
stereo_model = noiseModel.Diagonal.Sigmas([1.0; 1.0; 1.0]);
|
||||
stereo_model = noiseModel.Diagonal.Sigmas([1.0; 1.0; 1.0], true);
|
||||
|
||||
%% Add measurements
|
||||
% pose 1
|
||||
|
|
Loading…
Reference in New Issue