Add better hybrid support

release/4.3a0
Varun Agrawal 2023-02-13 15:28:35 -05:00
parent d6e87ec084
commit b5a3f11993
4 changed files with 75 additions and 13 deletions

View File

@ -106,7 +106,9 @@ GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
// TODO(dellaert): just use a virtual method defined in HybridFactor.
if (auto gf = dynamic_pointer_cast<GaussianFactor>(f)) {
result = addGaussian(result, gf);
} else if (auto gm = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
} else if (auto gmf = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
result = gmf->add(result);
} else if (auto gm = dynamic_pointer_cast<GaussianMixture>(f)) {
result = gm->add(result);
} else if (auto hc = dynamic_pointer_cast<HybridConditional>(f)) {
if (auto gm = hc->asMixture()) {
@ -283,17 +285,15 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
// taking care to correct for conditional constant.
// Correct for the normalization constant used up by the conditional
auto correct = [&](const Result &pair) -> GaussianFactor::shared_ptr {
auto correct = [&](const Result &pair) {
const auto &factor = pair.second;
if (!factor) return factor; // TODO(dellaert): not loving this.
if (!factor) return;
auto hf = boost::dynamic_pointer_cast<HessianFactor>(factor);
if (!hf) throw std::runtime_error("Expected HessianFactor!");
hf->constantTerm() += 2.0 * pair.first->logNormalizationConstant();
return hf;
};
eliminationResults.visit(correct);
GaussianMixtureFactor::Factors correctedFactors(eliminationResults,
correct);
const auto mixtureFactor = boost::make_shared<GaussianMixtureFactor>(
continuousSeparator, discreteSeparator, newFactors);

View File

@ -17,6 +17,7 @@
*/
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/MixtureFactor.h>
@ -69,6 +70,12 @@ HybridGaussianFactorGraph::shared_ptr HybridNonlinearFactorGraph::linearize(
} else if (dynamic_pointer_cast<DecisionTreeFactor>(f)) {
// If discrete-only: doesn't need linearization.
linearFG->push_back(f);
} else if (auto gmf = dynamic_pointer_cast<GaussianMixtureFactor>(f)) {
linearFG->push_back(gmf);
} else if (auto gm = dynamic_pointer_cast<GaussianMixture>(f)) {
linearFG->push_back(gm);
} else if (dynamic_pointer_cast<GaussianFactor>(f)) {
linearFG->push_back(f);
} else {
auto& fr = *f;
throw std::invalid_argument(

View File

@ -93,6 +93,7 @@ TEST(GaussianMixtureFactor, Sum) {
EXPECT(actual.at(1) == f22);
}
/* ************************************************************************* */
TEST(GaussianMixtureFactor, Printing) {
DiscreteKey m1(1, 2);
auto A1 = Matrix::Zero(2, 1);
@ -136,6 +137,7 @@ TEST(GaussianMixtureFactor, Printing) {
EXPECT(assert_print_equal(expected, mixtureFactor));
}
/* ************************************************************************* */
TEST(GaussianMixtureFactor, GaussianMixture) {
KeyVector keys;
keys.push_back(X(0));

View File

@ -612,7 +612,6 @@ TEST(HybridGaussianFactorGraph, ErrorAndProbPrimeTree) {
// Check that assembleGraphTree assembles Gaussian factor graphs for each
// assignment.
TEST(HybridGaussianFactorGraph, assembleGraphTree) {
using symbol_shorthand::Z;
const int num_measurements = 1;
auto fg = tiny::createHybridGaussianFactorGraph(
num_measurements, VectorValues{{Z(0), Vector1(5.0)}});
@ -694,7 +693,6 @@ bool ratioTest(const HybridBayesNet &bn, const VectorValues &measurements,
/* ****************************************************************************/
// Check that eliminating tiny net with 1 measurement yields correct result.
TEST(HybridGaussianFactorGraph, EliminateTiny1) {
using symbol_shorthand::Z;
const int num_measurements = 1;
const VectorValues measurements{{Z(0), Vector1(5.0)}};
auto bn = tiny::createHybridBayesNet(num_measurements);
@ -726,11 +724,67 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1) {
EXPECT(ratioTest(bn, measurements, *posterior));
}
/* ****************************************************************************/
// Check that eliminating tiny net with 1 measurement with mode order swapped
// yields correct result.
TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
const VectorValues measurements{{Z(0), Vector1(5.0)}};
// Create mode key: 1 is low-noise, 0 is high-noise.
const DiscreteKey mode{M(0), 2};
HybridBayesNet bn;
// Create Gaussian mixture z_0 = x0 + noise for each measurement.
bn.emplace_back(new GaussianMixture(
{Z(0)}, {X(0)}, {mode},
{GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, 3),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1,
0.5)}));
// Create prior on X(0).
bn.push_back(
GaussianConditional::sharedMeanAndStddev(X(0), Vector1(5.0), 0.5));
// Add prior on mode.
bn.emplace_back(new DiscreteConditional(mode, "1/1"));
// bn.print();
auto fg = bn.toFactorGraph(measurements);
EXPECT_LONGS_EQUAL(3, fg.size());
// fg.print();
EXPECT(ratioTest(bn, measurements, fg));
// Create expected Bayes Net:
HybridBayesNet expectedBayesNet;
// Create Gaussian mixture on X(0).
// regression, but mean checked to be 5.0 in both cases:
const auto conditional0 = boost::make_shared<GaussianConditional>(
X(0), Vector1(10.1379), I_1x1 * 2.02759),
conditional1 = boost::make_shared<GaussianConditional>(
X(0), Vector1(14.1421), I_1x1 * 2.82843);
expectedBayesNet.emplace_back(
new GaussianMixture({X(0)}, {}, {mode}, {conditional0, conditional1}));
// Add prior on mode.
expectedBayesNet.emplace_back(new DiscreteConditional(mode, "1/1"));
// Test elimination
const auto posterior = fg.eliminateSequential();
// EXPECT(assert_equal(expectedBayesNet, *posterior, 0.01));
EXPECT(ratioTest(bn, measurements, *posterior));
// posterior->print();
// posterior->optimize().print();
}
/* ****************************************************************************/
// Check that eliminating tiny net with 2 measurements yields correct result.
TEST(HybridGaussianFactorGraph, EliminateTiny2) {
// Create factor graph with 2 measurements such that posterior mean = 5.0.
using symbol_shorthand::Z;
const int num_measurements = 2;
const VectorValues measurements{{Z(0), Vector1(4.0)}, {Z(1), Vector1(6.0)}};
auto bn = tiny::createHybridBayesNet(num_measurements);
@ -764,7 +818,6 @@ TEST(HybridGaussianFactorGraph, EliminateTiny2) {
// Test eliminating tiny net with 1 mode per measurement.
TEST(HybridGaussianFactorGraph, EliminateTiny22) {
// Create factor graph with 2 measurements such that posterior mean = 5.0.
using symbol_shorthand::Z;
const int num_measurements = 2;
const bool manyModes = true;
@ -835,12 +888,12 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
// D D
// | |
// m1 m2
// | |
// | |
// C-x0-HC-x1-HC-x2
// | | |
// HF HF HF
// | | |
// n0 n1 n2
// n0 n1 n2
// | | |
// D D D
EXPECT_LONGS_EQUAL(11, fg.size());
@ -853,7 +906,7 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
EXPECT(ratioTest(bn, measurements, fg1));
// Create ordering that eliminates in time order, then discrete modes:
Ordering ordering {X(2), X(1), X(0), N(0), N(1), N(2), M(1), M(2)};
Ordering ordering{X(2), X(1), X(0), N(0), N(1), N(2), M(1), M(2)};
// Do elimination:
const HybridBayesNet::shared_ptr posterior = fg.eliminateSequential(ordering);