First cut on raw MultiplyHessianAdd for HessianFactor and JacobianFactor. Unit test is passed in testGaussianFactorGraphUnordered (multiplyHessianAdd3). Note the interface currently needs the accumulated diminsions of key variables. See GaussianFactorGraph::multiplyHessianAdd(double alpha,const double* x, double* y).

release/4.3a0
hchiu 2014-03-04 01:58:34 -05:00
parent 63f8c75fb2
commit b464b808ef
8 changed files with 144 additions and 4 deletions

View File

@ -118,6 +118,12 @@ namespace gtsam {
/// y += alpha * A'*A*x
virtual void multiplyHessianAdd(double alpha, const VectorValues& x, VectorValues& y) const = 0;
/// y += alpha * A'*A*x
virtual void multiplyHessianAdd(double alpha, const double* x, double* y, std::vector<size_t> keys) const = 0;
/// y += alpha * A'*A*x
virtual void multiplyHessianAdd(double alpha, const double* x, double* y) const = 0;
/// A'*b for Jacobian, eta for Hessian
virtual VectorValues gradientAtZero() const = 0;

View File

@ -54,6 +54,27 @@ namespace gtsam {
return keys;
}
/* ************************************************************************* */
vector<size_t> GaussianFactorGraph::getkeydim() const {
// First find dimensions of each variable
vector<size_t> dims;
BOOST_FOREACH(const sharedFactor& factor, *this) {
for (GaussianFactor::const_iterator pos = factor->begin();
pos != factor->end(); ++pos) {
if (dims.size() <= *pos)
dims.resize(*pos + 1, 0);
dims[*pos] = factor->getDim(pos);
}
}
// Find accumulated dimensions for variables
vector<size_t> dims_accumulated;
dims_accumulated.resize(dims.size()+1,0);
dims_accumulated[0]=0;
for (int i=1; i<dims_accumulated.size(); i++)
dims_accumulated[i] = dims_accumulated[i-1]+dims[i-1];
return dims_accumulated;
}
/* ************************************************************************* */
GaussianFactorGraph GaussianFactorGraph::clone() const {
GaussianFactorGraph result;
@ -313,6 +334,15 @@ namespace gtsam {
f->multiplyHessianAdd(alpha, x, y);
}
/* ************************************************************************* */
void GaussianFactorGraph::multiplyHessianAdd(double alpha,
const double* x, double* y) const {
vector<size_t> FactorKeys = getkeydim();
BOOST_FOREACH(const GaussianFactor::shared_ptr& f, *this)
f->multiplyHessianAdd(alpha, x, y, FactorKeys);
}
/* ************************************************************************* */
void GaussianFactorGraph::multiplyInPlace(const VectorValues& x, Errors& e) const {
multiplyInPlace(x, e.begin());

View File

@ -135,6 +135,8 @@ namespace gtsam {
typedef FastSet<Key> Keys;
Keys keys() const;
std::vector<size_t> getkeydim() const;
/** unnormalized error */
double error(const VectorValues& x) const {
double total_error = 0.;
@ -296,6 +298,10 @@ namespace gtsam {
void multiplyHessianAdd(double alpha, const VectorValues& x,
VectorValues& y) const;
///** y += alpha*A'A*x */
void multiplyHessianAdd(double alpha, const double* x,
double* y) const;
///** In-place version e <- A*x that overwrites e. */
void multiplyInPlace(const VectorValues& x, Errors& e) const;

View File

@ -535,6 +535,38 @@ void HessianFactor::multiplyHessianAdd(double alpha, const VectorValues& x,
}
}
/* ************************************************************************* */
void HessianFactor::multiplyHessianAdd(double alpha, const double* x,
double* yvalues, vector<size_t> keys) const {
// Create a vector of temporary y values, corresponding to rows i
vector<Vector> y;
y.reserve(size());
for (const_iterator it = begin(); it != end(); it++)
y.push_back(zero(getDim(it)));
// Accessing the VectorValues one by one is expensive
// So we will loop over columns to access x only once per column
// And fill the above temporary y values, to be added into yvalues after
for (DenseIndex j = 0; j < (DenseIndex)size(); ++j) {
DenseIndex i = 0;
for (; i < j; ++i)
y[i] += info_(i, j).knownOffDiagonal() * ConstDMap(x+keys[keys_[j]],keys[keys_[j]+1]-keys[keys_[j]]);
// blocks on the diagonal are only half
y[i] += info_(j, j).selfadjointView() * ConstDMap(x+keys[keys_[j]],keys[keys_[j]+1]-keys[keys_[j]]);
// for below diagonal, we take transpose block from upper triangular part
for (i = j + 1; i < (DenseIndex)size(); ++i)
y[i] += info_(i, j).knownOffDiagonal() * ConstDMap(x+keys[keys_[j]],keys[keys_[j]+1]-keys[keys_[j]]);
}
// copy to yvalues
for(DenseIndex i = 0; i < (DenseIndex)size(); ++i)
DMap(yvalues+keys[keys_[i]],keys[keys_[i]+1]-keys[keys_[i]]) += alpha * y[i];
}
/* ************************************************************************* */
VectorValues HessianFactor::gradientAtZero() const {
VectorValues g;

View File

@ -141,6 +141,12 @@ namespace gtsam {
typedef SymmetricBlockMatrix::Block Block; ///< A block from the Hessian matrix
typedef SymmetricBlockMatrix::constBlock constBlock; ///< A block from the Hessian matrix (const version)
// Use eigen magic to access raw memory
typedef Eigen::Matrix<double, Eigen::Dynamic, 1> DVector;
typedef Eigen::Map<DVector> DMap;
typedef Eigen::Map<const DVector> ConstDMap;
/** default constructor for I/O */
HessianFactor();
@ -376,6 +382,10 @@ namespace gtsam {
/** y += alpha * A'*A*x */
void multiplyHessianAdd(double alpha, const VectorValues& x, VectorValues& y) const;
void multiplyHessianAdd(double alpha, const double* x, double* y, std::vector<size_t> keys) const;
void multiplyHessianAdd(double alpha, const double* x, double* y) const {};
/// eta for Hessian
VectorValues gradientAtZero() const;

View File

@ -495,6 +495,7 @@ namespace gtsam {
if(xi.second)
xi.first->second = Vector::Zero(getDim(begin() + pos));
gtsam::transposeMultiplyAdd(Ab_(pos), E, xi.first->second);
}
}
@ -505,6 +506,26 @@ namespace gtsam {
transposeMultiplyAdd(alpha,Ax,y);
}
void JacobianFactor::multiplyHessianAdd(double alpha, const double* x, double* y, std::vector<size_t> keys) const {
if (empty()) return;
Vector Ax = zero(Ab_.rows());
// Just iterate over all A matrices and multiply in correct config part
for(size_t pos=0; pos<size(); ++pos)
Ax += Ab_(pos) * ConstDMap(x + keys[keys_[pos]],keys[keys_[pos]+1]-keys[keys_[pos]]);
// Deal with noise properly, need to Double* whiten as we are dividing by variance
if (model_) { model_->whitenInPlace(Ax); model_->whitenInPlace(Ax); }
// multiply with alpha
Ax *= alpha;
// Again iterate over all A matrices and insert Ai^e into y
for(size_t pos=0; pos<size(); ++pos)
DMap(y + keys[keys_[pos]],keys[keys_[pos]+1]-keys[keys_[pos]]) += Ab_(pos).transpose() * Ax;
}
/* ************************************************************************* */
VectorValues JacobianFactor::gradientAtZero() const {
VectorValues g;

View File

@ -96,6 +96,12 @@ namespace gtsam {
typedef ABlock::ColXpr BVector;
typedef constABlock::ConstColXpr constBVector;
// Use eigen magic to access raw memory
typedef Eigen::Matrix<double, Eigen::Dynamic, 1> DVector;
typedef Eigen::Map<DVector> DMap;
typedef Eigen::Map<const DVector> ConstDMap;
/** Convert from other GaussianFactor */
explicit JacobianFactor(const GaussianFactor& gf);
@ -275,6 +281,10 @@ namespace gtsam {
/** y += alpha * A'*A*x */
void multiplyHessianAdd(double alpha, const VectorValues& x, VectorValues& y) const;
void multiplyHessianAdd(double alpha, const double* x, double* y, std::vector<size_t> keys) const;
void multiplyHessianAdd(double alpha, const double* x, double* y) const {};
/// A'*b for Jacobian
VectorValues gradientAtZero() const;

View File

@ -166,9 +166,9 @@ static GaussianFactorGraph createSimpleGaussianFactorGraph() {
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
fg += JacobianFactor(2, 10*eye(2), -1.0*ones(2), unit2);
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
fg += JacobianFactor(2, -10*eye(2), 0, 10*eye(2), (Vector(2) << 2.0, -1.0), unit2);
fg += JacobianFactor(0, 10*eye(2), 2, -10*eye(2), (Vector(2) << 2.0, -1.0), unit2);
// measurement between x1 and l1: l1-x1=[0.0;0.2]
fg += JacobianFactor(2, -5*eye(2), 1, 5*eye(2), (Vector(2) << 0.0, 1.0), unit2);
fg += JacobianFactor(1, 5*eye(2), 2, -5*eye(2), (Vector(2) << 0.0, 1.0), unit2);
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
fg += JacobianFactor(0, -5*eye(2), 1, 5*eye(2), (Vector(2) << -1.0, 1.5), unit2);
return fg;
@ -313,6 +313,31 @@ TEST( GaussianFactorGraph, multiplyHessianAdd2 )
EXPECT(assert_equal(2*expected, actual));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, multiplyHessianAdd3 )
{
GaussianFactorGraph gfg = createGaussianFactorGraphWithHessianFactor();
// brute force
Matrix AtA; Vector eta; boost::tie(AtA,eta) = gfg.hessian();
Vector X(6); X<<1,2,3,4,5,6;
Vector Y(6); Y<<-450, -450, 300, 400, 2950, 3450;
EXPECT(assert_equal(Y,AtA*X));
double* x = &X[0];
double* y = &Y[0];
Vector fast_y = gtsam::zero(6);
double* actual = &fast_y[0];
gfg.multiplyHessianAdd(1.0, x, fast_y.data());
EXPECT(assert_equal(Y, fast_y));
// now, do it with non-zero y
gfg.multiplyHessianAdd(1.0, x, fast_y.data());
EXPECT(assert_equal(2*Y, fast_y));
}
/* ************************************************************************* */
TEST( GaussianFactorGraph, matricesMixed )