Simplify all call sites
parent
977112d004
commit
b45ba003ca
|
@ -414,7 +414,7 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
HybridGaussianConditional::Conditionals conditionals(
|
||||
eliminationResults, [](const Result &pair) { return pair.first; });
|
||||
auto hybridGaussian = std::make_shared<HybridGaussianConditional>(
|
||||
frontalKeys, continuousSeparator, discreteSeparator, conditionals);
|
||||
discreteSeparator, conditionals);
|
||||
|
||||
return {std::make_shared<HybridConditional>(hybridGaussian), newFactor};
|
||||
}
|
||||
|
|
|
@ -46,8 +46,7 @@ inline HybridBayesNet createHybridBayesNet(size_t num_measurements = 1,
|
|||
std::vector<GaussianConditional::shared_ptr> conditionals{
|
||||
GaussianConditional::sharedMeanAndStddev(Z(i), I_1x1, X(0), Z_1x1, 0.5),
|
||||
GaussianConditional::sharedMeanAndStddev(Z(i), I_1x1, X(0), Z_1x1, 3)};
|
||||
bayesNet.emplace_shared<HybridGaussianConditional>(
|
||||
KeyVector{Z(i)}, KeyVector{X(0)}, mode_i, conditionals);
|
||||
bayesNet.emplace_shared<HybridGaussianConditional>(mode_i, conditionals);
|
||||
}
|
||||
|
||||
// Create prior on X(0).
|
||||
|
|
|
@ -43,9 +43,6 @@ const DiscreteValues m1Assignment{{M(0), 1}};
|
|||
DiscreteConditional::shared_ptr mixing =
|
||||
std::make_shared<DiscreteConditional>(m, "60/40");
|
||||
|
||||
// define Continuous keys
|
||||
const KeyVector continuousKeys{Z(0)};
|
||||
|
||||
/**
|
||||
* Create a simple Gaussian Mixture Model represented as p(z|m)P(m)
|
||||
* where m is a discrete variable and z is a continuous variable.
|
||||
|
@ -61,8 +58,7 @@ HybridBayesNet GaussianMixtureModel(double mu0, double mu1, double sigma0,
|
|||
model0),
|
||||
c1 = std::make_shared<GaussianConditional>(Z(0), Vector1(mu1), I_1x1,
|
||||
model1);
|
||||
hbn.emplace_shared<HybridGaussianConditional>(continuousKeys, KeyVector{}, m,
|
||||
std::vector{c0, c1});
|
||||
hbn.emplace_shared<HybridGaussianConditional>(m, std::vector{c0, c1});
|
||||
hbn.push_back(mixing);
|
||||
return hbn;
|
||||
}
|
||||
|
|
|
@ -108,8 +108,7 @@ TEST(HybridBayesNet, evaluateHybrid) {
|
|||
HybridBayesNet bayesNet;
|
||||
bayesNet.push_back(continuousConditional);
|
||||
bayesNet.emplace_shared<HybridGaussianConditional>(
|
||||
KeyVector{X(1)}, KeyVector{}, Asia,
|
||||
std::vector{conditional0, conditional1});
|
||||
Asia, std::vector{conditional0, conditional1});
|
||||
bayesNet.emplace_shared<DiscreteConditional>(Asia, "99/1");
|
||||
|
||||
// Create values at which to evaluate.
|
||||
|
@ -169,8 +168,7 @@ TEST(HybridBayesNet, Error) {
|
|||
X(1), Vector1::Constant(2), I_1x1, model1);
|
||||
|
||||
auto gm = std::make_shared<HybridGaussianConditional>(
|
||||
KeyVector{X(1)}, KeyVector{}, Asia,
|
||||
std::vector{conditional0, conditional1});
|
||||
Asia, std::vector{conditional0, conditional1});
|
||||
// Create hybrid Bayes net.
|
||||
HybridBayesNet bayesNet;
|
||||
bayesNet.push_back(continuousConditional);
|
||||
|
|
|
@ -39,6 +39,8 @@ TEST(HybridConditional, Invariants) {
|
|||
const DiscreteValues d{{M(0), 1}};
|
||||
const HybridValues values{c, d};
|
||||
|
||||
GTSAM_PRINT(bn);
|
||||
|
||||
// Check invariants for p(z|x,m)
|
||||
auto hc0 = bn.at(0);
|
||||
CHECK(hc0->isHybrid());
|
||||
|
|
|
@ -623,10 +623,7 @@ TEST(HybridEstimation, ModeSelection) {
|
|||
Z_1x1, noise_loose),
|
||||
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), -I_1x1, X(1),
|
||||
Z_1x1, noise_tight)};
|
||||
bn.emplace_shared<HybridGaussianConditional>(
|
||||
KeyVector{Z(0)}, KeyVector{X(0), X(1)}, DiscreteKeys{mode},
|
||||
HybridGaussianConditional::Conditionals(DiscreteKeys{mode},
|
||||
conditionals));
|
||||
bn.emplace_shared<HybridGaussianConditional>(mode, conditionals);
|
||||
|
||||
VectorValues vv;
|
||||
vv.insert(Z(0), Z_1x1);
|
||||
|
@ -658,10 +655,7 @@ TEST(HybridEstimation, ModeSelection2) {
|
|||
Z_3x1, noise_loose),
|
||||
GaussianConditional::sharedMeanAndStddev(Z(0), I_3x3, X(0), -I_3x3, X(1),
|
||||
Z_3x1, noise_tight)};
|
||||
bn.emplace_shared<HybridGaussianConditional>(
|
||||
KeyVector{Z(0)}, KeyVector{X(0), X(1)}, DiscreteKeys{mode},
|
||||
HybridGaussianConditional::Conditionals(DiscreteKeys{mode},
|
||||
conditionals));
|
||||
bn.emplace_shared<HybridGaussianConditional>(mode, conditionals);
|
||||
|
||||
VectorValues vv;
|
||||
vv.insert(Z(0), Z_3x1);
|
||||
|
|
|
@ -52,8 +52,7 @@ const std::vector<GaussianConditional::shared_ptr> conditionals{
|
|||
commonSigma),
|
||||
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
|
||||
commonSigma)};
|
||||
const HybridGaussianConditional hybrid_conditional({Z(0)}, {X(0)}, mode,
|
||||
conditionals);
|
||||
const HybridGaussianConditional hybrid_conditional(mode, conditionals);
|
||||
} // namespace equal_constants
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -158,8 +157,7 @@ const std::vector<GaussianConditional::shared_ptr> conditionals{
|
|||
0.5),
|
||||
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
|
||||
3.0)};
|
||||
const HybridGaussianConditional hybrid_conditional({Z(0)}, {X(0)}, mode,
|
||||
conditionals);
|
||||
const HybridGaussianConditional hybrid_conditional(mode, conditionals);
|
||||
} // namespace mode_dependent_constants
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -169,7 +169,7 @@ TEST(HybridGaussianFactor, HybridGaussianConditional) {
|
|||
|
||||
auto gaussians = std::make_shared<GaussianConditional>();
|
||||
HybridGaussianConditional::Conditionals conditionals(gaussians);
|
||||
HybridGaussianConditional gm({}, keys, dKeys, conditionals);
|
||||
HybridGaussianConditional gm(dKeys, conditionals);
|
||||
|
||||
EXPECT_LONGS_EQUAL(2, gm.discreteKeys().size());
|
||||
}
|
||||
|
@ -234,9 +234,8 @@ static HybridGaussianConditional::shared_ptr CreateHybridMotionModel(
|
|||
-I_1x1, model1);
|
||||
DiscreteKeys discreteParents{m1};
|
||||
return std::make_shared<HybridGaussianConditional>(
|
||||
KeyVector{X(1)}, KeyVector{X(0)}, discreteParents,
|
||||
HybridGaussianConditional::Conditionals(discreteParents,
|
||||
std::vector{c0, c1}));
|
||||
discreteParents, HybridGaussianConditional::Conditionals(
|
||||
discreteParents, std::vector{c0, c1}));
|
||||
}
|
||||
|
||||
/// Create two state Bayes network with 1 or two measurement models
|
||||
|
|
|
@ -72,13 +72,10 @@ TEST(HybridGaussianFactorGraph, Creation) {
|
|||
// Define a hybrid gaussian conditional P(x0|x1, c0)
|
||||
// and add it to the factor graph.
|
||||
HybridGaussianConditional gm(
|
||||
{X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{M(0), 2}),
|
||||
HybridGaussianConditional::Conditionals(
|
||||
M(0),
|
||||
std::make_shared<GaussianConditional>(X(0), Z_3x1, I_3x3, X(1),
|
||||
I_3x3),
|
||||
std::make_shared<GaussianConditional>(X(0), Vector3::Ones(), I_3x3,
|
||||
X(1), I_3x3)));
|
||||
{M(0), 2},
|
||||
{std::make_shared<GaussianConditional>(X(0), Z_3x1, I_3x3, X(1), I_3x3),
|
||||
std::make_shared<GaussianConditional>(X(0), Vector3::Ones(), I_3x3, X(1),
|
||||
I_3x3)});
|
||||
hfg.add(gm);
|
||||
|
||||
EXPECT_LONGS_EQUAL(2, hfg.size());
|
||||
|
@ -654,11 +651,7 @@ TEST(HybridGaussianFactorGraph, ErrorTreeWithConditional) {
|
|||
x0, -I_1x1, model0),
|
||||
c1 = make_shared<GaussianConditional>(f01, Vector1(mu), I_1x1, x1, I_1x1,
|
||||
x0, -I_1x1, model1);
|
||||
DiscreteKeys discreteParents{m1};
|
||||
hbn.emplace_shared<HybridGaussianConditional>(
|
||||
KeyVector{f01}, KeyVector{x0, x1}, discreteParents,
|
||||
HybridGaussianConditional::Conditionals(discreteParents,
|
||||
std::vector{c0, c1}));
|
||||
hbn.emplace_shared<HybridGaussianConditional>(m1, std::vector{c0, c1});
|
||||
|
||||
// Discrete uniform prior.
|
||||
hbn.emplace_shared<DiscreteConditional>(m1, "0.5/0.5");
|
||||
|
@ -830,11 +823,8 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1) {
|
|||
X(0), Vector1(14.1421), I_1x1 * 2.82843),
|
||||
conditional1 = std::make_shared<GaussianConditional>(
|
||||
X(0), Vector1(10.1379), I_1x1 * 2.02759);
|
||||
DiscreteKeys discreteParents{mode};
|
||||
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
|
||||
KeyVector{X(0)}, KeyVector{}, discreteParents,
|
||||
HybridGaussianConditional::Conditionals(
|
||||
discreteParents, std::vector{conditional0, conditional1}));
|
||||
mode, std::vector{conditional0, conditional1});
|
||||
|
||||
// Add prior on mode.
|
||||
expectedBayesNet.emplace_shared<DiscreteConditional>(mode, "74/26");
|
||||
|
@ -860,10 +850,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
|
|||
std::vector<GaussianConditional::shared_ptr> conditionals{
|
||||
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, 3),
|
||||
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, 0.5)};
|
||||
auto gm = std::make_shared<HybridGaussianConditional>(
|
||||
KeyVector{Z(0)}, KeyVector{X(0)}, DiscreteKeys{mode},
|
||||
HybridGaussianConditional::Conditionals(DiscreteKeys{mode},
|
||||
conditionals));
|
||||
auto gm = std::make_shared<HybridGaussianConditional>(mode, conditionals);
|
||||
bn.push_back(gm);
|
||||
|
||||
// Create prior on X(0).
|
||||
|
@ -891,9 +878,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
|
|||
conditional1 = std::make_shared<GaussianConditional>(
|
||||
X(0), Vector1(14.1421), I_1x1 * 2.82843);
|
||||
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
|
||||
KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
|
||||
HybridGaussianConditional::Conditionals(
|
||||
DiscreteKeys{mode}, std::vector{conditional0, conditional1}));
|
||||
mode, std::vector{conditional0, conditional1});
|
||||
|
||||
// Add prior on mode.
|
||||
expectedBayesNet.emplace_shared<DiscreteConditional>(mode, "1/1");
|
||||
|
@ -929,9 +914,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny2) {
|
|||
conditional1 = std::make_shared<GaussianConditional>(
|
||||
X(0), Vector1(10.274), I_1x1 * 2.0548);
|
||||
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
|
||||
KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
|
||||
HybridGaussianConditional::Conditionals(
|
||||
DiscreteKeys{mode}, std::vector{conditional0, conditional1}));
|
||||
mode, std::vector{conditional0, conditional1});
|
||||
|
||||
// Add prior on mode.
|
||||
expectedBayesNet.emplace_shared<DiscreteConditional>(mode, "23/77");
|
||||
|
@ -980,10 +963,7 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
|
|||
GaussianConditional::sharedMeanAndStddev(Z(t), I_1x1, X(t), Z_1x1, 0.5),
|
||||
GaussianConditional::sharedMeanAndStddev(Z(t), I_1x1, X(t), Z_1x1,
|
||||
3.0)};
|
||||
bn.emplace_shared<HybridGaussianConditional>(
|
||||
KeyVector{Z(t)}, KeyVector{X(t)}, DiscreteKeys{noise_mode_t},
|
||||
HybridGaussianConditional::Conditionals(DiscreteKeys{noise_mode_t},
|
||||
conditionals));
|
||||
bn.emplace_shared<HybridGaussianConditional>(noise_mode_t, conditionals);
|
||||
|
||||
// Create prior on discrete mode N(t):
|
||||
bn.emplace_shared<DiscreteConditional>(noise_mode_t, "20/80");
|
||||
|
@ -999,10 +979,8 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
|
|||
0.2),
|
||||
GaussianConditional::sharedMeanAndStddev(X(t), I_1x1, X(t - 1), I_1x1,
|
||||
0.2)};
|
||||
auto gm = std::make_shared<HybridGaussianConditional>(
|
||||
KeyVector{X(t)}, KeyVector{X(t - 1)}, DiscreteKeys{motion_model_t},
|
||||
HybridGaussianConditional::Conditionals(DiscreteKeys{motion_model_t},
|
||||
conditionals));
|
||||
auto gm = std::make_shared<HybridGaussianConditional>(motion_model_t,
|
||||
conditionals);
|
||||
bn.push_back(gm);
|
||||
|
||||
// Create prior on motion model M(t):
|
||||
|
|
|
@ -115,9 +115,7 @@ TEST(HybridSerialization, HybridGaussianConditional) {
|
|||
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 0.5));
|
||||
const auto conditional1 = std::make_shared<GaussianConditional>(
|
||||
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 3));
|
||||
const HybridGaussianConditional gm({Z(0)}, {X(0)}, {mode},
|
||||
HybridGaussianConditional::Conditionals(
|
||||
{mode}, {conditional0, conditional1}));
|
||||
const HybridGaussianConditional gm(mode, {conditional0, conditional1});
|
||||
|
||||
EXPECT(equalsObj<HybridGaussianConditional>(gm));
|
||||
EXPECT(equalsXML<HybridGaussianConditional>(gm));
|
||||
|
|
Loading…
Reference in New Issue