diff --git a/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp b/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp index e678d5cf1..1599a8d0a 100644 --- a/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp +++ b/gtsam/nonlinear/LevenbergMarquardtOptimizer.cpp @@ -126,7 +126,7 @@ GaussianFactorGraph LevenbergMarquardtOptimizer::buildDampedSystem( if (params_.diagonalDamping && params_.reuse_diagonal_ == false) { state_.hessianDiagonal = linear.hessianDiagonal(); BOOST_FOREACH(Vector& v, state_.hessianDiagonal | map_values) { - for (size_t aa = 0; aa < v.size(); aa++) { + for (int aa = 0; aa < v.size(); aa++) { v(aa) = std::min(std::max(v(aa), min_diagonal_), max_diagonal_); v(aa) = sqrt(v(aa)); } @@ -141,13 +141,14 @@ GaussianFactorGraph LevenbergMarquardtOptimizer::buildDampedSystem( size_t dim = key_value.value.dim(); Matrix A = Matrix::Identity(dim, dim); //Replace the identity matrix with diagonal of Hessian - if (params_.diagonalDamping) + if (params_.diagonalDamping){ try { A.diagonal() = state_.hessianDiagonal.at(key_value.key); } catch (std::exception e) { // Don't attempt any damping if no key found in diagonal continue; } + } Vector b = Vector::Zero(dim); SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma); damped += boost::make_shared(key_value.key, A, b, model);