Update to Eigen 3.2.7

release/4.3a0
cbeall3 2015-11-10 12:50:25 -05:00
parent f1f6b82e15
commit b40db44470
45 changed files with 458 additions and 200 deletions

View File

@ -1,4 +1,4 @@
repo: 8a21fd850624c931e448cbcfb38168cb2717c790
node: c58038c56923e0fd86de3ded18e03df442e66dfb
node: b30b87236a1b1552af32ac34075ee5696a9b5a33
branch: 3.2
tag: 3.2.6
tag: 3.2.7

View File

@ -29,3 +29,4 @@ ffa86ffb557094721ca71dcea6aed2651b9fd610 3.2.0
36fd1ba04c120cfdd90f3e4cede47f43b21d19ad 3.2.3
10219c95fe653d4962aa9db4946f6fbea96dd740 3.2.4
bdd17ee3b1b3a166cd5ec36dcad4fc1f3faf774a 3.2.5
c58038c56923e0fd86de3ded18e03df442e66dfb 3.2.6

View File

@ -301,7 +301,7 @@ if(EIGEN_INCLUDE_INSTALL_DIR)
)
else()
set(INCLUDE_INSTALL_DIR
"${CMAKE_INSTALL_PREFIX}/include/eigen3"
"include/eigen3"
CACHE INTERNAL
"The directory where we install the header files (internal)"
)
@ -404,7 +404,7 @@ if(cmake_generator_tolower MATCHES "makefile")
message(STATUS "make install | Install to ${CMAKE_INSTALL_PREFIX}. To change that:")
message(STATUS " | cmake . -DCMAKE_INSTALL_PREFIX=yourpath")
message(STATUS " | Eigen headers will then be installed to:")
message(STATUS " | ${INCLUDE_INSTALL_DIR}")
message(STATUS " | ${CMAKE_INSTALL_PREFIX}/${INCLUDE_INSTALL_DIR}")
message(STATUS " | To install Eigen headers to a separate location, do:")
message(STATUS " | cmake . -DEIGEN_INCLUDE_INSTALL_DIR=yourpath")
message(STATUS "make doc | Generate the API documentation, requires Doxygen & LaTeX")

View File

@ -14,7 +14,7 @@
/**
* \defgroup SparseCore_Module SparseCore module
*
* This module provides a sparse matrix representation, and basic associatd matrix manipulations
* This module provides a sparse matrix representation, and basic associated matrix manipulations
* and operations.
*
* See the \ref TutorialSparse "Sparse tutorial"

View File

@ -289,7 +289,7 @@ template<typename Scalar> struct llt_inplace<Scalar, Lower>
return k;
mat.coeffRef(k,k) = x = sqrt(x);
if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
if (rs>0) A21 *= RealScalar(1)/x;
if (rs>0) A21 /= x;
}
return -1;
}

View File

@ -78,7 +78,7 @@ cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
{
res.itype = CHOLMOD_INT;
}
else if (internal::is_same<_Index,UF_long>::value)
else if (internal::is_same<_Index,SuiteSparse_long>::value)
{
res.itype = CHOLMOD_LONG;
}
@ -395,7 +395,7 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl
CholmodSimplicialLLT(const MatrixType& matrix) : Base()
{
init();
compute(matrix);
Base::compute(matrix);
}
~CholmodSimplicialLLT() {}
@ -442,7 +442,7 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp
CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
{
init();
compute(matrix);
Base::compute(matrix);
}
~CholmodSimplicialLDLT() {}
@ -487,7 +487,7 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper
CholmodSupernodalLLT(const MatrixType& matrix) : Base()
{
init();
compute(matrix);
Base::compute(matrix);
}
~CholmodSupernodalLLT() {}
@ -534,7 +534,7 @@ class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecom
CholmodDecomposition(const MatrixType& matrix) : Base()
{
init();
compute(matrix);
Base::compute(matrix);
}
~CholmodDecomposition() {}

View File

@ -124,6 +124,21 @@ class Array
}
#endif
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
Array(Array&& other)
: Base(std::move(other))
{
Base::_check_template_params();
if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
Base::_set_noalias(other);
}
Array& operator=(Array&& other)
{
other.swap(*this);
return *this;
}
#endif
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,

View File

@ -46,9 +46,6 @@ template<typename Derived> class ArrayBase
typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl;
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
@ -56,6 +53,7 @@ template<typename Derived> class ArrayBase
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseBase<Derived> Base;
using Base::operator*;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;

View File

@ -81,7 +81,8 @@ struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
)
),
Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + functor_traits<BinaryOp>::Cost
Cost0 = EIGEN_ADD_COST(LhsCoeffReadCost,RhsCoeffReadCost),
CoeffReadCost = EIGEN_ADD_COST(Cost0,functor_traits<BinaryOp>::Cost)
};
};
} // end namespace internal

View File

@ -47,7 +47,7 @@ struct traits<CwiseUnaryOp<UnaryOp, XprType> >
Flags = _XprTypeNested::Flags & (
HereditaryBits | LinearAccessBit | AlignedBit
| (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
CoeffReadCost = _XprTypeNested::CoeffReadCost + functor_traits<UnaryOp>::Cost
CoeffReadCost = EIGEN_ADD_COST(_XprTypeNested::CoeffReadCost, functor_traits<UnaryOp>::Cost)
};
};
}

View File

@ -41,14 +41,13 @@ static inline void check_DenseIndex_is_signed() {
template<typename Derived> class DenseBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
: public internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real,
DenseCoeffsBase<Derived> >
#else
: public DenseCoeffsBase<Derived>
#endif // not EIGEN_PARSED_BY_DOXYGEN
{
public:
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
class InnerIterator;
@ -63,8 +62,9 @@ template<typename Derived> class DenseBase
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef internal::special_scalar_op_base<Derived,Scalar,RealScalar, DenseCoeffsBase<Derived> > Base;
typedef DenseCoeffsBase<Derived> Base;
using Base::operator*;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;

View File

@ -122,33 +122,41 @@ template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseSt
{
internal::plain_array<T,Size,_Options> m_data;
public:
inline DenseStorage() {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
DenseStorage() {}
DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()) {}
inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); }
static inline DenseIndex rows(void) {return _Rows;}
static inline DenseIndex cols(void) {return _Cols;}
inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
inline void resize(DenseIndex,DenseIndex,DenseIndex) {}
inline const T *data() const { return m_data.array; }
inline T *data() { return m_data.array; }
DenseStorage(const DenseStorage& other) : m_data(other.m_data) {}
DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other) m_data = other.m_data;
return *this;
}
DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); }
static DenseIndex rows(void) {return _Rows;}
static DenseIndex cols(void) {return _Cols;}
void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
void resize(DenseIndex,DenseIndex,DenseIndex) {}
const T *data() const { return m_data.array; }
T *data() { return m_data.array; }
};
// null matrix
template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options>
{
public:
inline DenseStorage() {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert) {}
inline DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
inline void swap(DenseStorage& ) {}
static inline DenseIndex rows(void) {return _Rows;}
static inline DenseIndex cols(void) {return _Cols;}
inline void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
inline void resize(DenseIndex,DenseIndex,DenseIndex) {}
inline const T *data() const { return 0; }
inline T *data() { return 0; }
DenseStorage() {}
DenseStorage(internal::constructor_without_unaligned_array_assert) {}
DenseStorage(const DenseStorage&) {}
DenseStorage& operator=(const DenseStorage&) { return *this; }
DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
void swap(DenseStorage& ) {}
static DenseIndex rows(void) {return _Rows;}
static DenseIndex cols(void) {return _Cols;}
void conservativeResize(DenseIndex,DenseIndex,DenseIndex) {}
void resize(DenseIndex,DenseIndex,DenseIndex) {}
const T *data() const { return 0; }
T *data() { return 0; }
};
// more specializations for null matrices; these are necessary to resolve ambiguities
@ -168,18 +176,29 @@ template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic
DenseIndex m_rows;
DenseIndex m_cols;
public:
inline DenseStorage() : m_rows(0), m_cols(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
DenseStorage() : m_rows(0), m_cols(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
inline DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) : m_rows(nbRows), m_cols(nbCols) {}
inline void swap(DenseStorage& other)
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows), m_cols(other.m_cols) {}
DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_rows = other.m_rows;
m_cols = other.m_cols;
}
return *this;
}
DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) : m_rows(nbRows), m_cols(nbCols) {}
void swap(DenseStorage& other)
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
inline DenseIndex rows() const {return m_rows;}
inline DenseIndex cols() const {return m_cols;}
inline void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
inline void resize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
inline const T *data() const { return m_data.array; }
inline T *data() { return m_data.array; }
DenseIndex rows() const {return m_rows;}
DenseIndex cols() const {return m_cols;}
void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
void resize(DenseIndex, DenseIndex nbRows, DenseIndex nbCols) { m_rows = nbRows; m_cols = nbCols; }
const T *data() const { return m_data.array; }
T *data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed width
@ -188,17 +207,27 @@ template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Si
internal::plain_array<T,Size,_Options> m_data;
DenseIndex m_rows;
public:
inline DenseStorage() : m_rows(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
DenseStorage() : m_rows(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
inline DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex) : m_rows(nbRows) {}
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
inline DenseIndex rows(void) const {return m_rows;}
inline DenseIndex cols(void) const {return _Cols;}
inline void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
inline void resize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
inline const T *data() const { return m_data.array; }
inline T *data() { return m_data.array; }
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows) {}
DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_rows = other.m_rows;
}
return *this;
}
DenseStorage(DenseIndex, DenseIndex nbRows, DenseIndex) : m_rows(nbRows) {}
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
DenseIndex rows(void) const {return m_rows;}
DenseIndex cols(void) const {return _Cols;}
void conservativeResize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
void resize(DenseIndex, DenseIndex nbRows, DenseIndex) { m_rows = nbRows; }
const T *data() const { return m_data.array; }
T *data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed height
@ -207,17 +236,27 @@ template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Si
internal::plain_array<T,Size,_Options> m_data;
DenseIndex m_cols;
public:
inline DenseStorage() : m_cols(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
DenseStorage() : m_cols(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
inline DenseStorage(DenseIndex, DenseIndex, DenseIndex nbCols) : m_cols(nbCols) {}
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
inline DenseIndex rows(void) const {return _Rows;}
inline DenseIndex cols(void) const {return m_cols;}
inline void conservativeResize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
inline void resize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
inline const T *data() const { return m_data.array; }
inline T *data() { return m_data.array; }
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_cols(other.m_cols) {}
DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_cols = other.m_cols;
}
return *this;
}
DenseStorage(DenseIndex, DenseIndex, DenseIndex nbCols) : m_cols(nbCols) {}
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
DenseIndex rows(void) const {return _Rows;}
DenseIndex cols(void) const {return m_cols;}
void conservativeResize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
void resize(DenseIndex, DenseIndex, DenseIndex nbCols) { m_cols = nbCols; }
const T *data() const { return m_data.array; }
T *data() { return m_data.array; }
};
// purely dynamic matrix.
@ -227,18 +266,35 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
DenseIndex m_rows;
DenseIndex m_cols;
public:
inline DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert)
DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(0), m_rows(0), m_cols(0) {}
inline DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows), m_cols(nbCols)
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
inline void swap(DenseStorage& other)
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
DenseStorage(DenseStorage&& other)
: m_data(std::move(other.m_data))
, m_rows(std::move(other.m_rows))
, m_cols(std::move(other.m_cols))
{
other.m_data = nullptr;
}
DenseStorage& operator=(DenseStorage&& other)
{
using std::swap;
swap(m_data, other.m_data);
swap(m_rows, other.m_rows);
swap(m_cols, other.m_cols);
return *this;
}
#endif
~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
void swap(DenseStorage& other)
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
inline DenseIndex rows(void) const {return m_rows;}
inline DenseIndex cols(void) const {return m_cols;}
inline void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
DenseIndex rows(void) const {return m_rows;}
DenseIndex cols(void) const {return m_cols;}
void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols);
m_rows = nbRows;
@ -258,8 +314,11 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
m_rows = nbRows;
m_cols = nbCols;
}
inline const T *data() const { return m_data; }
inline T *data() { return m_data; }
const T *data() const { return m_data; }
T *data() { return m_data; }
private:
DenseStorage(const DenseStorage&);
DenseStorage& operator=(const DenseStorage&);
};
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
@ -268,15 +327,30 @@ template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Ro
T *m_data;
DenseIndex m_cols;
public:
inline DenseStorage() : m_data(0), m_cols(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
inline DenseStorage(DenseIndex size, DenseIndex, DenseIndex nbCols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(nbCols)
DenseStorage() : m_data(0), m_cols(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
DenseStorage(DenseIndex size, DenseIndex, DenseIndex nbCols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(nbCols)
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
static inline DenseIndex rows(void) {return _Rows;}
inline DenseIndex cols(void) const {return m_cols;}
inline void conservativeResize(DenseIndex size, DenseIndex, DenseIndex nbCols)
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
DenseStorage(DenseStorage&& other)
: m_data(std::move(other.m_data))
, m_cols(std::move(other.m_cols))
{
other.m_data = nullptr;
}
DenseStorage& operator=(DenseStorage&& other)
{
using std::swap;
swap(m_data, other.m_data);
swap(m_cols, other.m_cols);
return *this;
}
#endif
~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
static DenseIndex rows(void) {return _Rows;}
DenseIndex cols(void) const {return m_cols;}
void conservativeResize(DenseIndex size, DenseIndex, DenseIndex nbCols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols);
m_cols = nbCols;
@ -294,8 +368,11 @@ template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Ro
}
m_cols = nbCols;
}
inline const T *data() const { return m_data; }
inline T *data() { return m_data; }
const T *data() const { return m_data; }
T *data() { return m_data; }
private:
DenseStorage(const DenseStorage&);
DenseStorage& operator=(const DenseStorage&);
};
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
@ -304,15 +381,30 @@ template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dyn
T *m_data;
DenseIndex m_rows;
public:
inline DenseStorage() : m_data(0), m_rows(0) {}
inline DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
inline DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows)
DenseStorage() : m_data(0), m_rows(0) {}
DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows)
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
inline ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
inline void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
inline DenseIndex rows(void) const {return m_rows;}
static inline DenseIndex cols(void) {return _Cols;}
inline void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex)
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
DenseStorage(DenseStorage&& other)
: m_data(std::move(other.m_data))
, m_rows(std::move(other.m_rows))
{
other.m_data = nullptr;
}
DenseStorage& operator=(DenseStorage&& other)
{
using std::swap;
swap(m_data, other.m_data);
swap(m_rows, other.m_rows);
return *this;
}
#endif
~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
DenseIndex rows(void) const {return m_rows;}
static DenseIndex cols(void) {return _Cols;}
void conservativeResize(DenseIndex size, DenseIndex nbRows, DenseIndex)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols);
m_rows = nbRows;
@ -330,8 +422,11 @@ template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dyn
}
m_rows = nbRows;
}
inline const T *data() const { return m_data; }
inline T *data() { return m_data; }
const T *data() const { return m_data; }
T *data() { return m_data; }
private:
DenseStorage(const DenseStorage&);
DenseStorage& operator=(const DenseStorage&);
};
} // end namespace Eigen

View File

@ -35,7 +35,8 @@ struct traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
_LinearAccessMask = (RowsAtCompileTime==1 || ColsAtCompileTime==1) ? LinearAccessBit : 0,
Flags = ((HereditaryBits|_LinearAccessMask|AlignedBit) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0),//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit),
CoeffReadCost = NumTraits<Scalar>::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost
Cost0 = EIGEN_ADD_COST(NumTraits<Scalar>::MulCost, MatrixType::CoeffReadCost),
CoeffReadCost = EIGEN_ADD_COST(Cost0,DiagonalType::DiagonalVectorType::CoeffReadCost)
};
};
}

View File

@ -211,6 +211,21 @@ class Matrix
: Base(internal::constructor_without_unaligned_array_assert())
{ Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
Matrix(Matrix&& other)
: Base(std::move(other))
{
Base::_check_template_params();
if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
Base::_set_noalias(other);
}
Matrix& operator=(Matrix&& other)
{
other.swap(*this);
return *this;
}
#endif
/** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,

View File

@ -440,6 +440,15 @@ template<typename Derived> class MatrixBase
template<typename OtherScalar>
void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j);
///////// SparseCore module /////////
template<typename OtherDerived>
EIGEN_STRONG_INLINE const typename SparseMatrixBase<OtherDerived>::template CwiseProductDenseReturnType<Derived>::Type
cwiseProduct(const SparseMatrixBase<OtherDerived> &other) const
{
return other.cwiseProduct(derived());
}
///////// MatrixFunctions module /////////
typedef typename internal::stem_function<Scalar>::type StemFunction;

View File

@ -437,6 +437,20 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
}
#endif
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
PlainObjectBase(PlainObjectBase&& other)
: m_storage( std::move(other.m_storage) )
{
}
PlainObjectBase& operator=(PlainObjectBase&& other)
{
using std::swap;
swap(m_storage, other.m_storage);
return *this;
}
#endif
/** Copy constructor */
EIGEN_STRONG_INLINE PlainObjectBase(const PlainObjectBase& other)
: m_storage()

View File

@ -247,8 +247,9 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
}
};
template<typename Func, typename Derived>
struct redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling>
// NOTE: for SliceVectorizedTraversal we simply bypass unrolling
template<typename Func, typename Derived, int Unrolling>
struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling>
{
typedef typename Derived::Scalar Scalar;
typedef typename packet_traits<Scalar>::type PacketScalar;

View File

@ -180,15 +180,9 @@ inline Derived& DenseBase<Derived>::operator*=(const Scalar& other)
template<typename Derived>
inline Derived& DenseBase<Derived>::operator/=(const Scalar& other)
{
typedef typename internal::conditional<NumTraits<Scalar>::IsInteger,
internal::scalar_quotient_op<Scalar>,
internal::scalar_product_op<Scalar> >::type BinOp;
typedef typename Derived::PlainObject PlainObject;
SelfCwiseBinaryOp<BinOp, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
Scalar actual_other;
if(NumTraits<Scalar>::IsInteger) actual_other = other;
else actual_other = Scalar(1)/other;
tmp = PlainObject::Constant(rows(),cols(), actual_other);
SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
tmp = PlainObject::Constant(rows(),cols(), other);
return derived();
}

View File

@ -126,7 +126,7 @@ Packet4f pexp<Packet4f>(const Packet4f& _x)
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
Packet4f tmp = _mm_setzero_ps(), fx;
Packet4f tmp, fx;
Packet4i emm0;
// clamp x
@ -195,7 +195,7 @@ Packet2d pexp<Packet2d>(const Packet2d& _x)
_EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
static const __m128i p4i_1023_0 = _mm_setr_epi32(1023, 1023, 0, 0);
Packet2d tmp = _mm_setzero_pd(), fx;
Packet2d tmp, fx;
Packet4i emm0;
// clamp x
@ -279,7 +279,7 @@ Packet4f psin<Packet4f>(const Packet4f& _x)
_EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
Packet4f xmm1, xmm2, xmm3, sign_bit, y;
Packet4i emm0, emm2;
sign_bit = x;
@ -378,7 +378,7 @@ Packet4f pcos<Packet4f>(const Packet4f& _x)
_EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
_EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
Packet4f xmm1, xmm2, xmm3, y;
Packet4i emm0, emm2;
x = pabs(x);

View File

@ -302,9 +302,12 @@ EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conj
for (Index i=0; i<actual_mc; ++i)
r[i] -= a[i] * b;
}
Scalar b = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(rhs(j,j));
for (Index i=0; i<actual_mc; ++i)
r[i] *= b;
if((Mode & UnitDiag)==0)
{
Scalar b = conj(rhs(j,j));
for (Index i=0; i<actual_mc; ++i)
r[i] /= b;
}
}
// pack the just computed part of lhs to A

View File

@ -235,6 +235,9 @@ template<typename Scalar> class Rotation2D;
template<typename Scalar> class AngleAxis;
template<typename Scalar,int Dim> class Translation;
// Sparse module:
template<typename Derived> class SparseMatrixBase;
#ifdef EIGEN2_SUPPORT
template<typename Derived, int _Dim> class eigen2_RotationBase;
template<typename Lhs, typename Rhs> class eigen2_Cross;

View File

@ -13,7 +13,7 @@
#define EIGEN_WORLD_VERSION 3
#define EIGEN_MAJOR_VERSION 2
#define EIGEN_MINOR_VERSION 6
#define EIGEN_MINOR_VERSION 7
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
@ -96,6 +96,20 @@
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE std::ptrdiff_t
#endif
// A Clang feature extension to determine compiler features.
// We use it to determine 'cxx_rvalue_references'
#ifndef __has_feature
# define __has_feature(x) 0
#endif
// Do we support r-value references?
#if (__has_feature(cxx_rvalue_references) || \
defined(__GXX_EXPERIMENTAL_CXX0X__) || \
(defined(_MSC_VER) && _MSC_VER >= 1600))
#define EIGEN_HAVE_RVALUE_REFERENCES
#endif
// Cross compiler wrapper around LLVM's __has_builtin
#ifdef __has_builtin
# define EIGEN_HAS_BUILTIN(x) __has_builtin(x)
@ -409,6 +423,8 @@ namespace Eigen {
#define EIGEN_SIZE_MAX(a,b) (((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \
: ((int)a >= (int)b) ? (int)a : (int)b)
#define EIGEN_ADD_COST(a,b) int(a)==Dynamic || int(b)==Dynamic ? Dynamic : int(a)+int(b)
#define EIGEN_LOGICAL_XOR(a,b) (((a) || (b)) && !((a) && (b)))
#define EIGEN_IMPLIES(a,b) (!(a) || (b))

View File

@ -366,17 +366,17 @@ struct dense_xpr_base<Derived, ArrayXpr>
/** \internal Helper base class to add a scalar multiple operator
* overloads for complex types */
template<typename Derived,typename Scalar,typename OtherScalar,
template<typename Derived, typename Scalar, typename OtherScalar, typename BaseType,
bool EnableIt = !is_same<Scalar,OtherScalar>::value >
struct special_scalar_op_base : public DenseCoeffsBase<Derived>
struct special_scalar_op_base : public BaseType
{
// dummy operator* so that the
// "using special_scalar_op_base::operator*" compiles
void operator*() const;
};
template<typename Derived,typename Scalar,typename OtherScalar>
struct special_scalar_op_base<Derived,Scalar,OtherScalar,true> : public DenseCoeffsBase<Derived>
template<typename Derived,typename Scalar,typename OtherScalar, typename BaseType>
struct special_scalar_op_base<Derived,Scalar,OtherScalar,BaseType,true> : public BaseType
{
const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
operator*(const OtherScalar& scalar) const

View File

@ -131,7 +131,7 @@ public:
m_angle = Scalar(other.angle());
}
static inline const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); }
static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
@ -165,8 +165,8 @@ AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived
Scalar n2 = q.vec().squaredNorm();
if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
{
m_angle = 0;
m_axis << 1, 0, 0;
m_angle = Scalar(0);
m_axis << Scalar(1), Scalar(0), Scalar(0);
}
else
{

View File

@ -186,7 +186,8 @@ public:
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
BiCGSTAB(const MatrixType& A) : Base(A) {}
template<typename MatrixDerived>
explicit BiCGSTAB(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
~BiCGSTAB() {}

View File

@ -176,7 +176,8 @@ public:
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
ConjugateGradient(const MatrixType& A) : Base(A) {}
template<typename MatrixDerived>
explicit ConjugateGradient(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
~ConjugateGradient() {}

View File

@ -159,7 +159,7 @@ class IncompleteLUT : internal::noncopyable
template<typename Rhs, typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
x = m_Pinv * b;
x = m_Pinv * b;
x = m_lu.template triangularView<UnitLower>().solve(x);
x = m_lu.template triangularView<Upper>().solve(x);
x = m_P * x;
@ -222,16 +222,25 @@ template<typename _MatrixType>
void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
{
// Compute the Fill-reducing permutation
// Since ILUT does not perform any numerical pivoting,
// it is highly preferable to keep the diagonal through symmetric permutations.
#ifndef EIGEN_MPL2_ONLY
// To this end, let's symmetrize the pattern and perform AMD on it.
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
// Symmetrize the pattern
// FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
AtA.prune(keep_diag());
internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
m_Pinv = m_P.inverse(); // ... and the inverse permutation
AMDOrdering<Index> ordering;
ordering(AtA,m_P);
m_Pinv = m_P.inverse(); // cache the inverse permutation
#else
// If AMD is not available, (MPL2-only), then let's use the slower COLAMD routine.
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
COLAMDOrdering<Index> ordering;
ordering(mat1,m_Pinv);
m_P = m_Pinv.inverse();
#endif
m_analysisIsOk = true;
m_factorizationIsOk = false;

View File

@ -49,10 +49,11 @@ public:
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
IterativeSolverBase(const MatrixType& A)
template<typename InputDerived>
IterativeSolverBase(const EigenBase<InputDerived>& A)
{
init();
compute(A);
compute(A.derived());
}
~IterativeSolverBase() {}
@ -62,9 +63,11 @@ public:
* Currently, this function mostly call analyzePattern on the preconditioner. In the future
* we might, for instance, implement column reodering for faster matrix vector products.
*/
Derived& analyzePattern(const MatrixType& A)
template<typename InputDerived>
Derived& analyzePattern(const EigenBase<InputDerived>& A)
{
m_preconditioner.analyzePattern(A);
grabInput(A.derived());
m_preconditioner.analyzePattern(*mp_matrix);
m_isInitialized = true;
m_analysisIsOk = true;
m_info = Success;
@ -80,11 +83,12 @@ public:
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
Derived& factorize(const MatrixType& A)
template<typename InputDerived>
Derived& factorize(const EigenBase<InputDerived>& A)
{
grabInput(A.derived());
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
mp_matrix = &A;
m_preconditioner.factorize(A);
m_preconditioner.factorize(*mp_matrix);
m_factorizationIsOk = true;
m_info = Success;
return derived();
@ -100,10 +104,11 @@ public:
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
Derived& compute(const MatrixType& A)
template<typename InputDerived>
Derived& compute(const EigenBase<InputDerived>& A)
{
mp_matrix = &A;
m_preconditioner.compute(A);
grabInput(A.derived());
m_preconditioner.compute(*mp_matrix);
m_isInitialized = true;
m_analysisIsOk = true;
m_factorizationIsOk = true;
@ -212,6 +217,28 @@ public:
}
protected:
template<typename InputDerived>
void grabInput(const EigenBase<InputDerived>& A)
{
// we const cast to prevent the creation of a MatrixType temporary by the compiler.
grabInput_impl(A.const_cast_derived());
}
template<typename InputDerived>
void grabInput_impl(const EigenBase<InputDerived>& A)
{
m_copyMatrix = A;
mp_matrix = &m_copyMatrix;
}
void grabInput_impl(MatrixType& A)
{
if(MatrixType::RowsAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==Dynamic)
m_copyMatrix.resize(0,0);
mp_matrix = &A;
}
void init()
{
m_isInitialized = false;
@ -220,6 +247,7 @@ protected:
m_maxIterations = -1;
m_tolerance = NumTraits<Scalar>::epsilon();
}
MatrixType m_copyMatrix;
const MatrixType* mp_matrix;
Preconditioner m_preconditioner;

View File

@ -47,7 +47,7 @@ namespace Eigen {
* You can then apply it to a vector.
*
* R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
* NOTE : The Index type of R is always UF_long. You can get it with SPQR::Index
* NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
*
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
* NOTE
@ -59,7 +59,7 @@ class SPQR
public:
typedef typename _MatrixType::Scalar Scalar;
typedef typename _MatrixType::RealScalar RealScalar;
typedef UF_long Index ;
typedef SuiteSparse_long Index ;
typedef SparseMatrix<Scalar, ColMajor, Index> MatrixType;
typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
public:

View File

@ -314,10 +314,10 @@ SparseMatrixBase<Derived>::operator+=(const SparseMatrixBase<OtherDerived>& othe
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
EIGEN_STRONG_INLINE const typename SparseMatrixBase<Derived>::template CwiseProductDenseReturnType<OtherDerived>::Type
SparseMatrixBase<Derived>::cwiseProduct(const MatrixBase<OtherDerived> &other) const
{
return EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE(derived(), other.derived());
return typename CwiseProductDenseReturnType<OtherDerived>::Type(derived(), other.derived());
}
} // end namespace Eigen

View File

@ -691,7 +691,8 @@ class SparseMatrix
m_data.swap(other.m_data);
}
/** Sets *this to the identity matrix */
/** Sets *this to the identity matrix.
* This function also turns the matrix into compressed mode, and drop any reserved memory. */
inline void setIdentity()
{
eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
@ -699,6 +700,8 @@ class SparseMatrix
Eigen::Map<Matrix<Index, Dynamic, 1> >(&this->m_data.index(0), rows()).setLinSpaced(0, rows()-1);
Eigen::Map<Matrix<Scalar, Dynamic, 1> >(&this->m_data.value(0), rows()).setOnes();
Eigen::Map<Matrix<Index, Dynamic, 1> >(this->m_outerIndex, rows()+1).setLinSpaced(0, rows());
std::free(m_innerNonZeros);
m_innerNonZeros = 0;
}
inline SparseMatrix& operator=(const SparseMatrix& other)
{

View File

@ -23,7 +23,14 @@ namespace Eigen {
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN.
*/
template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
template<typename Derived> class SparseMatrixBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
: public internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real,
EigenBase<Derived> >
#else
: public EigenBase<Derived>
#endif // not EIGEN_PARSED_BY_DOXYGEN
{
public:
@ -36,7 +43,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
>::type PacketReturnType;
typedef SparseMatrixBase StorageBaseType;
typedef EigenBase<Derived> Base;
template<typename OtherDerived>
Derived& operator=(const EigenBase<OtherDerived> &other)
@ -132,6 +138,9 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
inline Derived& derived() { return *static_cast<Derived*>(this); }
inline Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<SparseMatrixBase*>(this)); }
typedef internal::special_scalar_op_base<Derived, Scalar, RealScalar, EigenBase<Derived> > Base;
using Base::operator*;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase
@ -317,20 +326,18 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
Derived& operator*=(const Scalar& other);
Derived& operator/=(const Scalar& other);
#define EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE \
CwiseBinaryOp< \
internal::scalar_product_op< \
typename internal::scalar_product_traits< \
typename internal::traits<Derived>::Scalar, \
typename internal::traits<OtherDerived>::Scalar \
>::ReturnType \
>, \
const Derived, \
const OtherDerived \
>
template<typename OtherDerived> struct CwiseProductDenseReturnType {
typedef CwiseBinaryOp<internal::scalar_product_op<typename internal::scalar_product_traits<
typename internal::traits<Derived>::Scalar,
typename internal::traits<OtherDerived>::Scalar
>::ReturnType>,
const Derived,
const OtherDerived
> Type;
};
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
EIGEN_STRONG_INLINE const typename CwiseProductDenseReturnType<OtherDerived>::Type
cwiseProduct(const MatrixBase<OtherDerived> &other) const;
// sparse * sparse

View File

@ -67,7 +67,6 @@ const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern;
const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern;
const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern;
template<typename Derived> class SparseMatrixBase;
template<typename _Scalar, int _Flags = 0, typename _Index = int> class SparseMatrix;
template<typename _Scalar, int _Flags = 0, typename _Index = int> class DynamicSparseMatrix;
template<typename _Scalar, int _Flags = 0, typename _Index = int> class SparseVector;

View File

@ -26,29 +26,18 @@ include(CTest)
set(EIGEN_TEST_BUILD_FLAGS " " CACHE STRING "Options passed to the build command of unit tests")
# overwrite default DartConfiguration.tcl
# The worarounds are different for each version of the MSVC IDE
if(MSVC_IDE)
if(CMAKE_MAKE_PROGRAM_SAVE MATCHES "devenv") # devenv
set(EIGEN_MAKECOMMAND_PLACEHOLDER "${CMAKE_MAKE_PROGRAM_SAVE} Eigen.sln /build \"Release\" /project buildtests ${EIGEN_TEST_BUILD_FLAGS} \n# ")
else() # msbuild
set(EIGEN_MAKECOMMAND_PLACEHOLDER "${CMAKE_MAKE_PROGRAM_SAVE} buildtests.vcxproj /p:Configuration=\${CTEST_CONFIGURATION_TYPE} ${EIGEN_TEST_BUILD_FLAGS}\n# ")
endif()
else()
# for make and nmake
set(EIGEN_MAKECOMMAND_PLACEHOLDER "${CMAKE_MAKE_PROGRAM_SAVE} buildtests ${EIGEN_TEST_BUILD_FLAGS}")
# Overwrite default DartConfiguration.tcl such that ctest can build our unit tests.
# Recall that our unit tests are not in the "all" target, so we have to explicitely ask ctest to build our custom 'buildtests' target.
# At this stage, we can also add custom flags to the build tool through the user defined EIGEN_TEST_BUILD_FLAGS variable.
file(READ "${CMAKE_CURRENT_BINARY_DIR}/DartConfiguration.tcl" EIGEN_DART_CONFIG_FILE)
# try to grab the default flags
string(REGEX MATCH "MakeCommand:.*-- (.*)\nDefaultCTestConfigurationType" EIGEN_DUMMY ${EIGEN_DART_CONFIG_FILE})
if(NOT CMAKE_MATCH_1)
string(REGEX MATCH "MakeCommand:.*[^c]make (.*)\nDefaultCTestConfigurationType" EIGEN_DUMMY ${EIGEN_DART_CONFIG_FILE})
endif()
# copy ctest properties, which currently
# o raise the warning levels
configure_file(${CMAKE_CURRENT_BINARY_DIR}/DartConfiguration.tcl ${CMAKE_BINARY_DIR}/DartConfiguration.tcl)
# restore default CMAKE_MAKE_PROGRAM
set(CMAKE_MAKE_PROGRAM ${CMAKE_MAKE_PROGRAM_SAVE})
# un-set temporary variables so that it is like they never existed.
# CMake 2.6.3 introduces the more logical unset() syntax for this.
set(CMAKE_MAKE_PROGRAM_SAVE)
set(EIGEN_MAKECOMMAND_PLACEHOLDER)
string(REGEX REPLACE "MakeCommand:.*DefaultCTestConfigurationType" "MakeCommand: ${CMAKE_COMMAND} --build . --target buildtests --config \"\${CTEST_CONFIGURATION_TYPE}\" -- ${CMAKE_MATCH_1} ${EIGEN_TEST_BUILD_FLAGS}\nDefaultCTestConfigurationType"
EIGEN_DART_CONFIG_FILE2 ${EIGEN_DART_CONFIG_FILE})
file(WRITE "${CMAKE_CURRENT_BINARY_DIR}/DartConfiguration.tcl" ${EIGEN_DART_CONFIG_FILE2})
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/CTestCustom.cmake.in ${CMAKE_BINARY_DIR}/CTestCustom.cmake)

View File

@ -26,7 +26,12 @@ if(SPQR_LIBRARIES)
find_library(SUITESPARSE_LIBRARY SuiteSparse PATHS $ENV{SPQRDIR} ${LIB_INSTALL_DIR})
if (SUITESPARSE_LIBRARY)
set(SPQR_LIBRARIES ${SPQR_LIBRARIES} ${SUITESPARSE_LIBRARY})
endif (SUITESPARSE_LIBRARY)
endif()
find_library(CHOLMOD_LIBRARY cholmod PATHS $ENV{UMFPACK_LIBDIR} $ENV{UMFPACKDIR} ${LIB_INSTALL_DIR})
if(CHOLMOD_LIBRARY)
set(SPQR_LIBRARIES ${SPQR_LIBRARIES} ${CHOLMOD_LIBRARY})
endif()
endif(SPQR_LIBRARIES)

View File

@ -20,24 +20,29 @@ find_library(UMFPACK_LIBRARIES umfpack PATHS $ENV{UMFPACKDIR} ${LIB_INSTALL_DIR}
if(UMFPACK_LIBRARIES)
if (NOT UMFPACK_LIBDIR)
if(NOT UMFPACK_LIBDIR)
get_filename_component(UMFPACK_LIBDIR ${UMFPACK_LIBRARIES} PATH)
endif(NOT UMFPACK_LIBDIR)
find_library(COLAMD_LIBRARY colamd PATHS ${UMFPACK_LIBDIR} $ENV{UMFPACKDIR} ${LIB_INSTALL_DIR})
if (COLAMD_LIBRARY)
if(COLAMD_LIBRARY)
set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${COLAMD_LIBRARY})
endif (COLAMD_LIBRARY)
endif ()
find_library(AMD_LIBRARY amd PATHS ${UMFPACK_LIBDIR} $ENV{UMFPACKDIR} ${LIB_INSTALL_DIR})
if (AMD_LIBRARY)
if(AMD_LIBRARY)
set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${AMD_LIBRARY})
endif (AMD_LIBRARY)
endif ()
find_library(SUITESPARSE_LIBRARY SuiteSparse PATHS ${UMFPACK_LIBDIR} $ENV{UMFPACKDIR} ${LIB_INSTALL_DIR})
if (SUITESPARSE_LIBRARY)
if(SUITESPARSE_LIBRARY)
set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${SUITESPARSE_LIBRARY})
endif (SUITESPARSE_LIBRARY)
endif ()
find_library(CHOLMOD_LIBRARY cholmod PATHS $ENV{UMFPACK_LIBDIR} $ENV{UMFPACKDIR} ${LIB_INSTALL_DIR})
if(CHOLMOD_LIBRARY)
set(UMFPACK_LIBRARIES ${UMFPACK_LIBRARIES} ${CHOLMOD_LIBRARY})
endif()
endif(UMFPACK_LIBRARIES)
@ -45,4 +50,4 @@ include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(UMFPACK DEFAULT_MSG
UMFPACK_INCLUDES UMFPACK_LIBRARIES)
mark_as_advanced(UMFPACK_INCLUDES UMFPACK_LIBRARIES AMD_LIBRARY COLAMD_LIBRARY SUITESPARSE_LIBRARY)
mark_as_advanced(UMFPACK_INCLUDES UMFPACK_LIBRARIES AMD_LIBRARY COLAMD_LIBRARY CHOLMOD_LIBRARY SUITESPARSE_LIBRARY)

View File

@ -222,6 +222,8 @@ ei_add_test(sizeoverflow)
ei_add_test(prec_inverse_4x4)
ei_add_test(vectorwiseop)
ei_add_test(special_numbers)
ei_add_test(rvalue_types)
ei_add_test(mpl2only)
ei_add_test(simplicial_cholesky)
ei_add_test(conjugate_gradient)

View File

@ -53,6 +53,14 @@ template<typename MatrixType> void matrixRedux(const MatrixType& m)
VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod());
VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff());
VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff());
// regression for bug 1090
const int R1 = MatrixType::RowsAtCompileTime>=2 ? MatrixType::RowsAtCompileTime/2 : 6;
const int C1 = MatrixType::ColsAtCompileTime>=2 ? MatrixType::ColsAtCompileTime/2 : 6;
if(R1<=rows-r0 && C1<=cols-c0)
{
VERIFY_IS_APPROX( (m1.template block<R1,C1>(r0,c0).sum()), m1.block(r0,c0,R1,C1).sum() );
}
// test empty objects
VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(), Scalar(0));

View File

@ -306,6 +306,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
refM4.setRandom();
// sparse cwise* dense
VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
// dense cwise* sparse
VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
// test aliasing
@ -529,6 +531,20 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
SparseMatrixType m1(rows, rows);
m1.setIdentity();
VERIFY_IS_APPROX(m1, refMat1);
for(int k=0; k<rows*rows/4; ++k)
{
Index i = internal::random<Index>(0,rows-1);
Index j = internal::random<Index>(0,rows-1);
Scalar v = internal::random<Scalar>();
m1.coeffRef(i,j) = v;
refMat1.coeffRef(i,j) = v;
VERIFY_IS_APPROX(m1, refMat1);
if(internal::random<Index>(0,10)<2)
m1.makeCompressed();
}
m1.setIdentity();
refMat1.setIdentity();
VERIFY_IS_APPROX(m1, refMat1);
}
}

View File

@ -67,6 +67,22 @@ void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A,
VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!");
VERIFY(x.isApprox(refX,test_precision<Scalar>()));
}
// if not too large, do some extra check:
if(A.rows()<2000)
{
// test expression as input
{
solver.compute(0.5*(A+A));
Rhs x = solver.solve(b);
VERIFY(x.isApprox(refX,test_precision<Scalar>()));
Solver solver2(0.5*(A+A));
Rhs x2 = solver2.solve(b);
VERIFY(x2.isApprox(refX,test_precision<Scalar>()));
}
}
}
template<typename Solver, typename Rhs>

View File

@ -631,7 +631,7 @@ template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> >
{
typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerType::Scalar>::Real,DerType::RowsAtCompileTime,DerType::ColsAtCompileTime> > Real;
typedef AutoDiffScalar<DerType> NonInteger;
typedef AutoDiffScalar<DerType>& Nested;
typedef AutoDiffScalar<DerType> Nested;
enum{
RequireInitialization = 1
};

View File

@ -1,5 +1,6 @@
ADD_SUBDIRECTORY(AutoDiff)
ADD_SUBDIRECTORY(BVH)
ADD_SUBDIRECTORY(Eigenvalues)
ADD_SUBDIRECTORY(FFT)
ADD_SUBDIRECTORY(IterativeSolvers)
ADD_SUBDIRECTORY(KroneckerProduct)

View File

@ -133,8 +133,8 @@ class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
DGMRES(const MatrixType& A) : Base(A),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false)
{}
template<typename MatrixDerived>
explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
~DGMRES() {}

View File

@ -285,7 +285,8 @@ public:
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
GMRES(const MatrixType& A) : Base(A), m_restart(30) {}
template<typename MatrixDerived>
explicit GMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30) {}
~GMRES() {}

View File

@ -228,7 +228,8 @@ namespace Eigen {
* this class becomes invalid. Call compute() to update it with the new
* matrix A, or modify a copy of A.
*/
MINRES(const MatrixType& A) : Base(A) {}
template<typename MatrixDerived>
explicit MINRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()) {}
/** Destructor. */
~MINRES(){}