Removed dependency of eloboratePoint2KalmnFIlter example on the LinearizedFactor class
parent
c503ed45ed
commit
b39970ad9a
|
@ -21,9 +21,6 @@
|
|||
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/nonlinear/LinearizedFactor.h>
|
||||
//#include <gtsam/nonlinear/NonlinearOptimization-inl.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph-inl.h>
|
||||
#include <gtsam/nonlinear/LieValues-inl.h>
|
||||
#include <gtsam/nonlinear/Ordering.h>
|
||||
#include <gtsam/nonlinear/Key.h>
|
||||
|
@ -44,7 +41,13 @@ int main() {
|
|||
// [code below basically does SRIF with LDL]
|
||||
|
||||
// Create a factor graph to perform the inference
|
||||
NonlinearFactorGraph<Values>::shared_ptr nonlinearFactorGraph(new NonlinearFactorGraph<Values>);
|
||||
GaussianFactorGraph::shared_ptr linearFactorGraph(new GaussianFactorGraph);
|
||||
|
||||
// Create the desired ordering
|
||||
Ordering::shared_ptr ordering(new Ordering);
|
||||
|
||||
// Create a structure to hold the linearization points
|
||||
Values linearizationPoints;
|
||||
|
||||
// Ground truth example
|
||||
// Start at origin, move to the right (x-axis): 0,0 0,1 0,2
|
||||
|
@ -52,15 +55,19 @@ int main() {
|
|||
// Measurements are GPS like, (x-z)^2, where z is a 2D measurement
|
||||
// i.e., we should get 0,0 0,1 0,2 if there is no noise
|
||||
|
||||
// Create new state variable, x0
|
||||
// Create new state variable
|
||||
Key x0(0);
|
||||
ordering->insert(x0, 0);
|
||||
|
||||
// Initialize state x0 (2D point) at origin by adding a prior factor, i.e., Bayes net P(x0)
|
||||
// This is equivalent to x_0 and P_0
|
||||
Point2 x_initial(0,0);
|
||||
SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
|
||||
PriorFactor<Values, Key> factor1(x0, x_initial, P_initial);
|
||||
nonlinearFactorGraph->add(factor1);
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearizationPoints.insert(x0, x_initial);
|
||||
linearFactorGraph->push_back(factor1.linearize(linearizationPoints, *ordering));
|
||||
|
||||
|
||||
// Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
|
||||
// In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
|
||||
|
@ -83,10 +90,14 @@ int main() {
|
|||
// = (F - I)*x_{t} + B*u_{t}
|
||||
// = B*u_{t} (for our example)
|
||||
Key x1(1);
|
||||
ordering->insert(x1, 1);
|
||||
|
||||
Point2 difference(1,0);
|
||||
SharedDiagonal Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
|
||||
BetweenFactor<Values, Key> factor2(x0, x1, difference, Q);
|
||||
nonlinearFactorGraph->add(factor2);
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearizationPoints.insert(x1, x_initial);
|
||||
linearFactorGraph->push_back(factor2.linearize(linearizationPoints, *ordering));
|
||||
|
||||
// We have now made the small factor graph f1-(x0)-f2-(x1)
|
||||
// where factor f1 is just the prior from time t0, P(x0)
|
||||
|
@ -100,40 +111,52 @@ int main() {
|
|||
// variables. Also, the nonlinear factors are linearized around an initial estimate. For a true linear
|
||||
// system, the initial estimate is not important.
|
||||
|
||||
// Create the desired ordering
|
||||
Ordering::shared_ptr ordering(new Ordering);
|
||||
ordering->insert(x0, 0);
|
||||
ordering->insert(x1, 1);
|
||||
// Create a set of linearization points at (0,0). Since this is a linear system, the actual linearization point doesn't matter
|
||||
Values linearizationPoints;
|
||||
linearizationPoints.insert(x0, Point2(0,0));
|
||||
linearizationPoints.insert(x1, Point2(0,0));
|
||||
// Convert the nonlinear factor graph into an "ordered" linear factor graph
|
||||
GaussianFactorGraph::shared_ptr linearFactorGraph = nonlinearFactorGraph->linearize(linearizationPoints, *ordering)->dynamicCastFactors<GaussianFactorGraph>();
|
||||
//->template dynamicCastFactors<GaussianFactorGraph>()
|
||||
|
||||
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
|
||||
GaussianSequentialSolver solver0(*linearFactorGraph);
|
||||
GaussianBayesNet::shared_ptr linearBayesNet = solver0.eliminate();
|
||||
|
||||
// If needed, the current estimate of x1 may be extracted from the Bayes Network
|
||||
// Extract the current estimate of x1,P1 from the Bayes Network
|
||||
VectorValues result = optimize(*linearBayesNet);
|
||||
Point2 x1_predict = linearizationPoints[x1].expmap(result[ordering->at(x1)]);
|
||||
x1_predict.print("X1 Predict");
|
||||
|
||||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
LinearizedFactor<Values,Key>::KeyLookup lookup;
|
||||
lookup[0] = x0; lookup[1] = x1;
|
||||
LinearizedFactor<Values,Key> factor3(linearBayesNet->back()->toFactor(), lookup, linearizationPoints);
|
||||
// Update the new linearization point to the new estimate
|
||||
linearizationPoints.update(x1, x1_predict);
|
||||
|
||||
|
||||
|
||||
// Create a new, empty graph and add the prior from the previous step
|
||||
nonlinearFactorGraph = NonlinearFactorGraph<Values>::shared_ptr(new NonlinearFactorGraph<Values>);
|
||||
nonlinearFactorGraph->add(factor3);
|
||||
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
|
||||
|
||||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
// Some care must be done here, as the linearization point in future steps will be different
|
||||
// than what was used when the factor was created.
|
||||
// f = || F*dx1' - (F*x0 - x1) ||^2, originally linearized at x1 = x0
|
||||
// After this step, the factor needs to be linearized around x1 = x1_predict
|
||||
// This changes the factor to f = || F*dx1'' - b'' ||^2
|
||||
// = || F*(dx1' - (dx1' - dx1'')) - b'' ||^2
|
||||
// = || F*dx1' - F*(dx1' - dx1'') - b'' ||^2
|
||||
// = || F*dx1' - (b'' + F(dx1' - dx1'')) ||^2
|
||||
// -> b' = b'' + F(dx1' - dx1'')
|
||||
// -> b'' = b' - F(dx1' - dx1'')
|
||||
// = || F*dx1'' - (b' - F(dx1' - dx1'')) ||^2
|
||||
// = || F*dx1'' - (b' - F(x_predict - x_inital)) ||^2
|
||||
const GaussianConditional::shared_ptr& cg0 = linearBayesNet->back();
|
||||
assert(cg0->nrFrontals() == 1);
|
||||
assert(cg0->nrParents() == 0);
|
||||
linearFactorGraph->add(0, cg0->get_R(), cg0->get_d() - cg0->get_R()*result[ordering->at(x1)], noiseModel::Diagonal::Sigmas(cg0->get_sigmas(), true));
|
||||
|
||||
// Create the desired ordering
|
||||
ordering = Ordering::shared_ptr(new Ordering);
|
||||
ordering->insert(x1, 0);
|
||||
|
||||
// Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
|
||||
// This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1) ~ f3(x1)*f4(x1;z1)
|
||||
// So, we need to create the measurement factor, f4
|
||||
// For the Kalman Filter, this the the measurement function, h(x_{t}) = z_{t}
|
||||
// where f3 is the prior from the previous step, and
|
||||
// where f4 is a measurement factor
|
||||
//
|
||||
// So, now we need to create the measurement factor, f4
|
||||
// For the Kalman Filter, this is the measurement function, h(x_{t}) = z_{t}
|
||||
// Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v
|
||||
// where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R
|
||||
//
|
||||
|
@ -146,85 +169,99 @@ int main() {
|
|||
// In the case of factor graphs, the factor related to the measurements would be defined as
|
||||
// f4 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
|
||||
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
|
||||
// This can again be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R.
|
||||
// This can be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R.
|
||||
Point2 z1(1.0, 0.0);
|
||||
SharedDiagonal R1 = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25));
|
||||
PriorFactor<Values, Key> factor4(x1, z1, R1);
|
||||
nonlinearFactorGraph->add(factor4);
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearFactorGraph->push_back(factor4.linearize(linearizationPoints, *ordering));
|
||||
|
||||
// We have now made the small factor graph f3-(x1)-f2
|
||||
// We have now made the small factor graph f3-(x1)-f4
|
||||
// where factor f3 is the prior from previous time ( P(x1) )
|
||||
// and factor f4 is from the measurement, z1 ( P(x1|z1) )
|
||||
// Eliminate this in order x1, to get Bayes net P(x1)
|
||||
// As this is a filter, all we need is the posterior P(x1), so we just keep the root of the Bayes net
|
||||
// We solve as before...
|
||||
|
||||
// Create the desired ordering
|
||||
ordering = Ordering::shared_ptr(new Ordering);
|
||||
ordering->insert(x1, 0);
|
||||
// Create a set of linearization points at (0,0). Since this is a linear system, the actual linearization point doesn't matter
|
||||
linearizationPoints.insert(x1, Point2(0,0));
|
||||
// Convert the nonlinear factor graph into an "ordered" linear factor graph
|
||||
linearFactorGraph = nonlinearFactorGraph->linearize(linearizationPoints, *ordering)->dynamicCastFactors<gtsam::GaussianFactorGraph>();
|
||||
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
|
||||
GaussianSequentialSolver solver1(*linearFactorGraph);
|
||||
linearBayesNet = solver1.eliminate();
|
||||
|
||||
// If needed, the current estimate of x1 may be extracted from the Bayes Network
|
||||
// Extract the current estimate of x1 from the Bayes Network
|
||||
result = optimize(*linearBayesNet);
|
||||
Point2 x1_update = linearizationPoints[x1].expmap(result[ordering->at(x1)]);
|
||||
x1_update.print("X1 Update");
|
||||
|
||||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
lookup[0] = x1;
|
||||
LinearizedFactor<Values,Key> factor5(linearBayesNet->back()->toFactor(), lookup, linearizationPoints);
|
||||
// Update the linearization point to the new estimate
|
||||
linearizationPoints.update(x1, x1_update);
|
||||
|
||||
|
||||
|
||||
// Create a new, empty graph and add the prior from the previous step
|
||||
nonlinearFactorGraph = NonlinearFactorGraph<Values>::shared_ptr(new NonlinearFactorGraph<Values>);
|
||||
nonlinearFactorGraph->add(factor5);
|
||||
|
||||
|
||||
|
||||
// Wash, rinse, repeat for another time step
|
||||
Key x2(2);
|
||||
difference = Point2(1,0);
|
||||
Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
|
||||
BetweenFactor<Values, Key> factor6(x1, x2, difference, Q);
|
||||
nonlinearFactorGraph->add(factor6);
|
||||
// Create a new, empty graph and add the prior from the previous step
|
||||
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
|
||||
|
||||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
const GaussianConditional::shared_ptr& cg1 = linearBayesNet->back();
|
||||
assert(cg1->nrFrontals() == 1);
|
||||
assert(cg1->nrParents() == 0);
|
||||
linearFactorGraph->add(0, cg1->get_R(), cg1->get_d() - cg1->get_R()*result[ordering->at(x1)], noiseModel::Diagonal::Sigmas(cg1->get_sigmas(), true));
|
||||
|
||||
// Create a key for the new state
|
||||
Key x2(2);
|
||||
|
||||
// We have now made the small factor graph f5-(x1)-f6-(x2)
|
||||
// Eliminate this in order x1, x2, to get Bayes net P(x1|x2)P(x2)
|
||||
// Create the desired ordering
|
||||
ordering = Ordering::shared_ptr(new Ordering);
|
||||
ordering->insert(x1, 0);
|
||||
ordering->insert(x2, 1);
|
||||
// Create a set of linearization points at (0,0). Since this is a linear system, the actual linearization point doesn't matter
|
||||
linearizationPoints.insert(x1, Point2(0,0));
|
||||
linearizationPoints.insert(x2, Point2(0,0));
|
||||
// Convert the nonlinear factor graph into an "ordered" linear factor graph
|
||||
linearFactorGraph = nonlinearFactorGraph->linearize(linearizationPoints, *ordering)->dynamicCastFactors<gtsam::GaussianFactorGraph>();
|
||||
|
||||
// Create a nonlinear factor describing the motion model
|
||||
difference = Point2(1,0);
|
||||
Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
|
||||
BetweenFactor<Values, Key> factor6(x1, x2, difference, Q);
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearizationPoints.insert(x2, x1_update);
|
||||
linearFactorGraph->push_back(factor6.linearize(linearizationPoints, *ordering));
|
||||
|
||||
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
|
||||
GaussianSequentialSolver solver2(*linearFactorGraph);
|
||||
linearBayesNet = solver2.eliminate();
|
||||
|
||||
// If needed, the current estimate of x2 may be extracted from the Bayes Network
|
||||
// Extract the current estimate of x2 from the Bayes Network
|
||||
result = optimize(*linearBayesNet);
|
||||
Point2 x2_predict = linearizationPoints[x2].expmap(result[ordering->at(x2)]);
|
||||
x2_predict.print("X2 Predict");
|
||||
|
||||
// Convert the root conditional, P(x2) in this case, into a Prior for the next step
|
||||
lookup[0] = x1; lookup[1] = x2;
|
||||
LinearizedFactor<Values,Key> factor7(linearBayesNet->back()->toFactor(), lookup, linearizationPoints);
|
||||
// Update the linearization point to the new estimate
|
||||
linearizationPoints.update(x2, x2_predict);
|
||||
|
||||
|
||||
|
||||
// Now add the next measurement
|
||||
// Create a new, empty graph and add the prior from the previous step
|
||||
nonlinearFactorGraph = NonlinearFactorGraph<Values>::shared_ptr(new NonlinearFactorGraph<Values>);
|
||||
nonlinearFactorGraph->add(factor7);
|
||||
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
|
||||
|
||||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
const GaussianConditional::shared_ptr& cg2 = linearBayesNet->back();
|
||||
assert(cg2->nrFrontals() == 1);
|
||||
assert(cg2->nrParents() == 0);
|
||||
linearFactorGraph->add(0, cg2->get_R(), cg2->get_d() - cg2->get_R()*result[ordering->at(x2)], noiseModel::Diagonal::Sigmas(cg2->get_sigmas(), true));
|
||||
|
||||
// Create the desired ordering
|
||||
ordering = Ordering::shared_ptr(new Ordering);
|
||||
ordering->insert(x2, 0);
|
||||
|
||||
// And update using z2 ...
|
||||
Point2 z2(2.0, 0.0);
|
||||
SharedDiagonal R2 = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25));
|
||||
PriorFactor<Values, Key> factor8(x2, z2, R2);
|
||||
nonlinearFactorGraph->add(factor8);
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearFactorGraph->push_back(factor8.linearize(linearizationPoints, *ordering));
|
||||
|
||||
// We have now made the small factor graph f7-(x2)-f8
|
||||
// where factor f7 is the prior from previous time ( P(x2) )
|
||||
|
@ -233,72 +270,85 @@ int main() {
|
|||
// As this is a filter, all we need is the posterior P(x2), so we just keep the root of the Bayes net
|
||||
// We solve as before...
|
||||
|
||||
// Create the desired ordering
|
||||
ordering = Ordering::shared_ptr(new Ordering);
|
||||
ordering->insert(x2, 0);
|
||||
// Create a set of linearization points at (0,0). Since this is a linear system, the actual linearization point doesn't matter
|
||||
linearizationPoints.insert(x2, Point2(0,0));
|
||||
// Convert the nonlinear factor graph into an "ordered" linear factor graph
|
||||
linearFactorGraph = nonlinearFactorGraph->linearize(linearizationPoints, *ordering)->dynamicCastFactors<gtsam::GaussianFactorGraph>();
|
||||
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
|
||||
GaussianSequentialSolver solver3(*linearFactorGraph);
|
||||
linearBayesNet = solver3.eliminate();
|
||||
|
||||
// If needed, the current estimate of x2 may be extracted from the Bayes Network
|
||||
// Extract the current estimate of x2 from the Bayes Network
|
||||
result = optimize(*linearBayesNet);
|
||||
Point2 x2_update = linearizationPoints[x2].expmap(result[ordering->at(x2)]);
|
||||
x2_update.print("X2 Update");
|
||||
|
||||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
lookup[0] = x2;
|
||||
LinearizedFactor<Values,Key> factor9(linearBayesNet->back()->toFactor(), lookup, linearizationPoints);
|
||||
// Update the linearization point to the new estimate
|
||||
linearizationPoints.update(x2, x2_update);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// Wash, rinse, repeat for a third time step
|
||||
// Create a new, empty graph and add the prior from the previous step
|
||||
nonlinearFactorGraph = NonlinearFactorGraph<Values>::shared_ptr(new NonlinearFactorGraph<Values>);
|
||||
nonlinearFactorGraph->add(factor9);
|
||||
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
|
||||
|
||||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
const GaussianConditional::shared_ptr& cg3 = linearBayesNet->back();
|
||||
assert(cg3->nrFrontals() == 1);
|
||||
assert(cg3->nrParents() == 0);
|
||||
linearFactorGraph->add(0, cg3->get_R(), cg3->get_d() - cg3->get_R()*result[ordering->at(x2)], noiseModel::Diagonal::Sigmas(cg3->get_sigmas(), true));
|
||||
|
||||
|
||||
// Wash, rinse, repeat for another time step
|
||||
// Create a key for the new state
|
||||
Key x3(3);
|
||||
difference = Point2(1,0);
|
||||
Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
|
||||
BetweenFactor<Values, Key> factor10(x2, x3, difference, Q);
|
||||
nonlinearFactorGraph->add(factor10);
|
||||
|
||||
// We have now made the small factor graph f9-(x2)-f10-(x3)
|
||||
// Eliminate this in order x2, x3, to get Bayes net P(x2|x3)P(x3)
|
||||
// Create the desired ordering
|
||||
ordering = Ordering::shared_ptr(new Ordering);
|
||||
ordering->insert(x2, 0);
|
||||
ordering->insert(x3, 1);
|
||||
// Create a set of linearization points at (0,0). Since this is a linear system, the actual linearization point doesn't matter
|
||||
linearizationPoints.insert(x2, Point2(0,0));
|
||||
linearizationPoints.insert(x3, Point2(0,0));
|
||||
// Convert the nonlinear factor graph into an "ordered" linear factor graph
|
||||
linearFactorGraph = nonlinearFactorGraph->linearize(linearizationPoints, *ordering)->dynamicCastFactors<gtsam::GaussianFactorGraph>();
|
||||
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x2,x3) = P(x2|x3)*P(x3) )
|
||||
|
||||
// Create a nonlinear factor describing the motion model
|
||||
difference = Point2(1,0);
|
||||
Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
|
||||
BetweenFactor<Values, Key> factor10(x2, x3, difference, Q);
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearizationPoints.insert(x3, x2_update);
|
||||
linearFactorGraph->push_back(factor10.linearize(linearizationPoints, *ordering));
|
||||
|
||||
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
|
||||
GaussianSequentialSolver solver4(*linearFactorGraph);
|
||||
linearBayesNet = solver4.eliminate();
|
||||
|
||||
// If needed, the current estimate of x3 may be extracted from the Bayes Network
|
||||
// Extract the current estimate of x3 from the Bayes Network
|
||||
result = optimize(*linearBayesNet);
|
||||
Point2 x3_predict = linearizationPoints[x3].expmap(result[ordering->at(x3)]);
|
||||
x3_predict.print("X3 Predict");
|
||||
|
||||
// Convert the root conditional, P(x3) in this case, into a Prior for the next step
|
||||
lookup[0] = x2; lookup[1] = x3;
|
||||
LinearizedFactor<Values,Key> factor11(linearBayesNet->back()->toFactor(), lookup, linearizationPoints);
|
||||
// Update the linearization point to the new estimate
|
||||
linearizationPoints.update(x3, x3_predict);
|
||||
|
||||
|
||||
|
||||
// Now add the next measurement
|
||||
// Create a new, empty graph and add the prior from the previous step
|
||||
nonlinearFactorGraph = NonlinearFactorGraph<Values>::shared_ptr(new NonlinearFactorGraph<Values>);
|
||||
nonlinearFactorGraph->add(factor11);
|
||||
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
|
||||
|
||||
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
|
||||
const GaussianConditional::shared_ptr& cg4 = linearBayesNet->back();
|
||||
assert(cg4->nrFrontals() == 1);
|
||||
assert(cg4->nrParents() == 0);
|
||||
linearFactorGraph->add(0, cg4->get_R(), cg4->get_d() - cg4->get_R()*result[ordering->at(x3)], noiseModel::Diagonal::Sigmas(cg4->get_sigmas(), true));
|
||||
|
||||
// Create the desired ordering
|
||||
ordering = Ordering::shared_ptr(new Ordering);
|
||||
ordering->insert(x3, 0);
|
||||
|
||||
// And update using z3 ...
|
||||
Point2 z3(3.0, 0.0);
|
||||
SharedDiagonal R3 = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25));
|
||||
PriorFactor<Values, Key> factor12(x3, z3, R3);
|
||||
nonlinearFactorGraph->add(factor12);
|
||||
|
||||
// Linearize the factor and add it to the linear factor graph
|
||||
linearFactorGraph->push_back(factor12.linearize(linearizationPoints, *ordering));
|
||||
|
||||
// We have now made the small factor graph f11-(x3)-f12
|
||||
// where factor f11 is the prior from previous time ( P(x3) )
|
||||
|
@ -307,21 +357,19 @@ int main() {
|
|||
// As this is a filter, all we need is the posterior P(x3), so we just keep the root of the Bayes net
|
||||
// We solve as before...
|
||||
|
||||
// Create the desired ordering
|
||||
ordering = Ordering::shared_ptr(new Ordering);
|
||||
ordering->insert(x3, 0);
|
||||
// Create a set of linearization points at (0,0). Since this is a linear system, the actual linearization point doesn't matter
|
||||
linearizationPoints.insert(x3, Point2(0,0));
|
||||
// Convert the nonlinear factor graph into an "ordered" linear factor graph
|
||||
linearFactorGraph = nonlinearFactorGraph->linearize(linearizationPoints, *ordering)->dynamicCastFactors<gtsam::GaussianFactorGraph>();
|
||||
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
|
||||
GaussianSequentialSolver solver5(*linearFactorGraph);
|
||||
linearBayesNet = solver5.eliminate();
|
||||
|
||||
// If needed, the current estimate of x1 may be extracted from the Bayes Network
|
||||
// Extract the current estimate of x2 from the Bayes Network
|
||||
result = optimize(*linearBayesNet);
|
||||
Point2 x3_update = linearizationPoints[x3].expmap(result[ordering->at(x3)]);
|
||||
x3_update.print("X3 Update");
|
||||
|
||||
// Update the linearization point to the new estimate
|
||||
linearizationPoints.update(x3, x3_update);
|
||||
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -1,93 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file LinearApproxFactor.h
|
||||
* @brief A dummy factor that allows a linear factor to act as a nonlinear factor
|
||||
* @author Alex Cunningham
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/nonlinear/LinearApproxFactor.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <boost/foreach.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class VALUES, class KEY>
|
||||
Vector LinearApproxFactor<VALUES,KEY>::unwhitenedError(const VALUES& c) const {
|
||||
// extract the points in the new values
|
||||
Vector ret = b_;
|
||||
|
||||
BOOST_FOREACH(const KEY& key, nonlinearKeys_) {
|
||||
X newPt = c[key], linPt = lin_points_[key];
|
||||
Vector d = linPt.logmap(newPt);
|
||||
const Matrix& A = matrices_.at(key);
|
||||
ret -= A * d;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class VALUES, class KEY>
|
||||
boost::shared_ptr<GaussianFactor>
|
||||
LinearApproxFactor<VALUES,KEY>::linearize(const VALUES& c, const Ordering& ordering) const {
|
||||
|
||||
// sort by varid - only known at linearization time
|
||||
typedef std::map<Index, Matrix> VarMatrixMap;
|
||||
VarMatrixMap sorting_terms;
|
||||
BOOST_FOREACH(const typename KeyMatrixMap::value_type& p, matrices_)
|
||||
sorting_terms.insert(std::make_pair(ordering[p.first], p.second));
|
||||
|
||||
// move into terms
|
||||
std::vector<std::pair<Index, Matrix> > terms;
|
||||
BOOST_FOREACH(const VarMatrixMap::value_type& p, sorting_terms)
|
||||
terms.push_back(p);
|
||||
|
||||
// compute rhs: adjust current by whitened update
|
||||
Vector b = unwhitenedError(c) + b_; // remove original b
|
||||
this->noiseModel_->whitenInPlace(b);
|
||||
|
||||
return boost::shared_ptr<GaussianFactor>(new JacobianFactor(terms, b - b_, model_));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class VALUES, class KEY>
|
||||
IndexFactor::shared_ptr
|
||||
LinearApproxFactor<VALUES,KEY>::symbolic(const Ordering& ordering) const {
|
||||
std::vector<Index> key_ids(this->keys_.size());
|
||||
size_t i=0;
|
||||
BOOST_FOREACH(const Symbol& key, this->keys_)
|
||||
key_ids[i++] = ordering[key];
|
||||
std::sort(key_ids.begin(), key_ids.end());
|
||||
return boost::shared_ptr<IndexFactor>(new IndexFactor(key_ids.begin(), key_ids.end()));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class VALUES, class KEY>
|
||||
void LinearApproxFactor<VALUES,KEY>::print(const std::string& s) const {
|
||||
this->noiseModel_->print(s + std::string(" model"));
|
||||
BOOST_FOREACH(const typename KeyMatrixMap::value_type& p, matrices_) {
|
||||
gtsam::print(p.second, (std::string) p.first);
|
||||
}
|
||||
gtsam::print(b_, std::string("b"));
|
||||
std::cout << " nonlinear keys: ";
|
||||
BOOST_FOREACH(const KEY& key, nonlinearKeys_)
|
||||
key.print(" ");
|
||||
lin_points_.print("Linearization Point");
|
||||
}
|
||||
|
||||
} // \namespace gtsam
|
|
@ -1,123 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file LinearApproxFactor.h
|
||||
* @brief A dummy factor that allows a linear factor to act as a nonlinear factor
|
||||
* @author Alex Cunningham
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/nonlinear/Ordering.h>
|
||||
#include <gtsam/linear/SharedDiagonal.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/base/Vector.h>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam{
|
||||
|
||||
/**
|
||||
* A dummy factor that takes a linearized factor and inserts it into
|
||||
* a nonlinear graph. This version uses exactly one type of variable.
|
||||
*
|
||||
* IMPORTANT: Don't use this factor - used LinearizedFactor instead
|
||||
*/
|
||||
template <class VALUES, class KEY>
|
||||
class LinearApproxFactor : public NonlinearFactor<VALUES> {
|
||||
|
||||
public:
|
||||
/** type for the variable */
|
||||
typedef typename KEY::Value X;
|
||||
|
||||
/** base type */
|
||||
typedef NonlinearFactor<VALUES> Base;
|
||||
|
||||
/** shared pointer for convenience */
|
||||
typedef boost::shared_ptr<LinearApproxFactor<VALUES,KEY> > shared_ptr;
|
||||
|
||||
/** typedefs for key vectors */
|
||||
typedef std::vector<KEY> KeyVector;
|
||||
|
||||
protected:
|
||||
/** hold onto the factor itself */
|
||||
// store components of a jacobian factor
|
||||
typedef std::map<KEY, Matrix> KeyMatrixMap;
|
||||
KeyMatrixMap matrices_;
|
||||
Vector b_;
|
||||
SharedDiagonal model_; /// separate from the noisemodel in NonlinearFactor due to Diagonal/Gaussian
|
||||
|
||||
/** linearization points for error calculation */
|
||||
VALUES lin_points_;
|
||||
|
||||
/** keep keys for the factor */
|
||||
KeyVector nonlinearKeys_;
|
||||
|
||||
/** default constructor for serialization */
|
||||
LinearApproxFactor() {}
|
||||
|
||||
/**
|
||||
* use this for derived classes with keys that don't copy easily
|
||||
*/
|
||||
LinearApproxFactor(size_t dim, const VALUES& lin_points)
|
||||
: Base(noiseModel::Unit::Create(dim)), lin_points_(lin_points) {}
|
||||
LinearApproxFactor(SharedDiagonal model)
|
||||
: Base(model), model_(model) {}
|
||||
LinearApproxFactor(SharedDiagonal model, const VALUES& lin_points)
|
||||
: Base(model), model_(model), lin_points_(lin_points) {}
|
||||
|
||||
public:
|
||||
|
||||
virtual ~LinearApproxFactor() {}
|
||||
|
||||
/** Vector of errors, unwhitened ! */
|
||||
virtual Vector unwhitenedError(const VALUES& c) const;
|
||||
|
||||
/**
|
||||
* linearize to a GaussianFactor
|
||||
* Reconstructs the linear factor from components to ensure that
|
||||
* the ordering is correct
|
||||
*/
|
||||
virtual boost::shared_ptr<GaussianFactor> linearize(
|
||||
const VALUES& c, const Ordering& ordering) const;
|
||||
|
||||
/**
|
||||
* Create a symbolic factor using the given ordering to determine the
|
||||
* variable indices.
|
||||
*/
|
||||
IndexFactor::shared_ptr symbolic(const Ordering& ordering) const;
|
||||
|
||||
/** get access to nonlinear keys */
|
||||
KeyVector nonlinearKeys() const { return nonlinearKeys_; }
|
||||
|
||||
/** override print function */
|
||||
virtual void print(const std::string& s="") const;
|
||||
|
||||
/** access to b vector of gaussian */
|
||||
Vector get_b() const { return b_; }
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & boost::serialization::make_nvp("NonlinearFactor",
|
||||
boost::serialization::base_object<Base>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(matrices_);
|
||||
ar & BOOST_SERIALIZATION_NVP(b_);
|
||||
ar & BOOST_SERIALIZATION_NVP(model_);
|
||||
ar & BOOST_SERIALIZATION_NVP(lin_points_);
|
||||
ar & BOOST_SERIALIZATION_NVP(nonlinearKeys_);
|
||||
}
|
||||
};
|
||||
|
||||
} // \namespace gtsam
|
|
@ -1,83 +0,0 @@
|
|||
/*
|
||||
* @file LinearizedFactor.h
|
||||
* @brief A dummy factor that allows a linear factor to act as a nonlinear factor
|
||||
* @author Alex Cunningham
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/nonlinear/LinearApproxFactor-inl.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <boost/foreach.hpp>
|
||||
|
||||
namespace gtsam{
|
||||
|
||||
/**
|
||||
* Wrapper around a LinearApproxFactor with some extra interfaces
|
||||
*/
|
||||
template <class VALUES, class KEY>
|
||||
class LinearizedFactor : public LinearApproxFactor<VALUES, KEY> {
|
||||
|
||||
public:
|
||||
/** base type */
|
||||
typedef LinearApproxFactor<VALUES, KEY> Base;
|
||||
|
||||
/** shared pointer for convenience */
|
||||
typedef boost::shared_ptr<LinearizedFactor<VALUES,KEY> > shared_ptr;
|
||||
|
||||
/** decoder for keys - avoids the use of a full ordering */
|
||||
typedef std::map<Index, KEY> KeyLookup;
|
||||
|
||||
protected:
|
||||
/** default constructor for serialization */
|
||||
LinearizedFactor() {}
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* Use this constructor when starting with linear keys and adding in a label
|
||||
* @param label is a label to add to the keys
|
||||
* @param lin_factor is a gaussian factor with linear keys (no labels baked in)
|
||||
* @param values is assumed to have the correct key structure with labels
|
||||
*/
|
||||
LinearizedFactor(JacobianFactor::shared_ptr lin_factor,
|
||||
const KeyLookup& decoder, const VALUES& lin_points)
|
||||
: Base(lin_factor->get_model()) {
|
||||
this->b_ = lin_factor->getb();
|
||||
BOOST_FOREACH(const Index& idx, *lin_factor) {
|
||||
// find nonlinear multirobot key
|
||||
typename KeyLookup::const_iterator decode_it = decoder.find(idx);
|
||||
assert(decode_it != decoder.end());
|
||||
KEY key = decode_it->second;
|
||||
|
||||
// extract linearization point
|
||||
assert(lin_points.exists(key));
|
||||
typename KEY::Value value = lin_points[key];
|
||||
this->lin_points_.insert(key, value); // NOTE: will not overwrite
|
||||
|
||||
// extract Jacobian
|
||||
Matrix A = lin_factor->getA(lin_factor->find(idx));
|
||||
this->matrices_.insert(std::make_pair(key, A));
|
||||
|
||||
// store keys
|
||||
this->nonlinearKeys_.push_back(key);
|
||||
this->keys_.push_back(key);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & boost::serialization::make_nvp("LinearApproxFactor",
|
||||
boost::serialization::base_object<Base>(*this));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // \namespace gtsam
|
Loading…
Reference in New Issue