Examples that show rotation-first strategy
parent
40cdab999b
commit
b32931f879
File diff suppressed because it is too large
Load Diff
|
@ -12,12 +12,14 @@
|
||||||
|
|
||||||
%% Initialize graph, initial estimate, and odometry noise
|
%% Initialize graph, initial estimate, and odometry noise
|
||||||
import gtsam.*
|
import gtsam.*
|
||||||
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
|
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 1*pi/180]);
|
||||||
[graph,initial]=load2D('Data/w100-odom.graph',model);
|
maxID=0;
|
||||||
|
addNoise=false;
|
||||||
|
smart=true;
|
||||||
|
[graph,initial]=load2D('Data/w10000-odom.graph',model,maxID,addNoise,smart);
|
||||||
initial.print(sprintf('Initial estimate:\n'));
|
initial.print(sprintf('Initial estimate:\n'));
|
||||||
|
|
||||||
%% Add a Gaussian prior on pose x_1
|
%% Add a Gaussian prior on pose x_1
|
||||||
import gtsam.*
|
|
||||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
|
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
|
||||||
priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
|
priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
|
||||||
graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph
|
graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph
|
||||||
|
@ -28,7 +30,9 @@ P=initial.poses;
|
||||||
plot(P(:,1),P(:,2),'g-*'); axis equal
|
plot(P(:,1),P(:,2),'g-*'); axis equal
|
||||||
|
|
||||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||||
|
tic
|
||||||
result = graph.optimize(initial,1);
|
result = graph.optimize(initial,1);
|
||||||
|
toc
|
||||||
P=result.poses;
|
P=result.poses;
|
||||||
hold on; plot(P(:,1),P(:,2),'b-*')
|
hold on; plot(P(:,1),P(:,2),'b-*')
|
||||||
result.print(sprintf('\nFinal result:\n'));
|
result.print(sprintf('\nFinal result:\n'));
|
||||||
|
|
|
@ -0,0 +1,36 @@
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
% Atlanta, Georgia 30332-0415
|
||||||
|
% All Rights Reserved
|
||||||
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
%
|
||||||
|
% See LICENSE for the license information
|
||||||
|
%
|
||||||
|
% @brief Read graph from file and perform GraphSLAM
|
||||||
|
% @author Frank Dellaert
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
%% Initialize graph, initial estimate, and odometry noise
|
||||||
|
import gtsam.*
|
||||||
|
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 1*pi/180]);
|
||||||
|
maxID=0;
|
||||||
|
addNoise=false;
|
||||||
|
smart=true;
|
||||||
|
[graph,initial]=load2D('Data/w10000-odom.graph',model,maxID,addNoise,smart);
|
||||||
|
|
||||||
|
%% Add a Gaussian prior on pose x_1
|
||||||
|
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
|
||||||
|
priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
|
||||||
|
graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph
|
||||||
|
|
||||||
|
%% Plot Initial Estimate
|
||||||
|
figure(1);clf
|
||||||
|
P=initial.poses;
|
||||||
|
plot(P(:,1),P(:,2),'r-'); axis equal
|
||||||
|
|
||||||
|
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||||
|
tic
|
||||||
|
result = graph.optimize(initial,1);
|
||||||
|
toc
|
||||||
|
P=result.poses;
|
||||||
|
hold on; plot(P(:,1),P(:,2),'b-')
|
|
@ -0,0 +1,52 @@
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
% Atlanta, Georgia 30332-0415
|
||||||
|
% All Rights Reserved
|
||||||
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
%
|
||||||
|
% See LICENSE for the license information
|
||||||
|
%
|
||||||
|
% @brief Read graph from file and perform GraphSLAM
|
||||||
|
% @author Frank Dellaert
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
import gtsam.*
|
||||||
|
maxID=0;
|
||||||
|
addNoise=false;
|
||||||
|
smart=true;
|
||||||
|
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
|
||||||
|
priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
|
||||||
|
|
||||||
|
%% Create graph, disregarding translation measurements by setting sigma high
|
||||||
|
model = noiseModel.Diagonal.Sigmas([100000; 100000; 1*pi/180]);
|
||||||
|
[graph,initial]=load2D('Data/w10000-odom.graph',model,maxID,addNoise,smart);
|
||||||
|
|
||||||
|
%% Add a Gaussian prior on pose x_1
|
||||||
|
graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph
|
||||||
|
|
||||||
|
%% Plot Initial Estimate
|
||||||
|
figure(1);clf
|
||||||
|
P=initial.poses;
|
||||||
|
plot(P(:,1),P(:,2),'r-'); axis equal
|
||||||
|
|
||||||
|
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||||
|
tic
|
||||||
|
result1 = graph.optimize(initial,1);
|
||||||
|
toc
|
||||||
|
P=result1.poses;
|
||||||
|
hold on; plot(P(:,1),P(:,2),'g-')
|
||||||
|
|
||||||
|
%% Read again, with correct noise now...
|
||||||
|
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 1*pi/180]);
|
||||||
|
graph=load2D('Data/w10000-odom.graph',model,maxID,addNoise,smart);
|
||||||
|
|
||||||
|
%% Add a Gaussian prior on pose x_1
|
||||||
|
graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph
|
||||||
|
|
||||||
|
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||||
|
tic
|
||||||
|
result2 = graph.optimize(result1,1);
|
||||||
|
toc
|
||||||
|
P=result2.poses;
|
||||||
|
hold on; plot(P(:,1),P(:,2),'b-')
|
||||||
|
|
Loading…
Reference in New Issue