printErrors method for HybridNonlinearFactorGraph
parent
114a0b220b
commit
b2ab233750
|
|
@ -42,6 +42,98 @@ void HybridNonlinearFactorGraph::print(const std::string& s,
|
|||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void HybridNonlinearFactorGraph::printErrors(
|
||||
const HybridValues& values, const std::string& str,
|
||||
const KeyFormatter& keyFormatter,
|
||||
const std::function<bool(const Factor* /*factor*/, double /*whitenedError*/,
|
||||
size_t /*index*/)>& printCondition) const {
|
||||
std::cout << str << "size: " << size() << std::endl << std::endl;
|
||||
|
||||
std::stringstream ss;
|
||||
|
||||
for (size_t i = 0; i < factors_.size(); i++) {
|
||||
auto&& factor = factors_[i];
|
||||
std::cout << "Factor " << i << ": ";
|
||||
|
||||
// Clear the stringstream
|
||||
ss.str(std::string());
|
||||
|
||||
if (auto mf = std::dynamic_pointer_cast<MixtureFactor>(factor)) {
|
||||
if (factor == nullptr) {
|
||||
std::cout << "nullptr"
|
||||
<< "\n";
|
||||
} else {
|
||||
factor->print(ss.str(), keyFormatter);
|
||||
std::cout << "error = ";
|
||||
mf->error(values.nonlinear()).print("", DefaultKeyFormatter);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
} else if (auto gmf =
|
||||
std::dynamic_pointer_cast<GaussianMixtureFactor>(factor)) {
|
||||
if (factor == nullptr) {
|
||||
std::cout << "nullptr"
|
||||
<< "\n";
|
||||
} else {
|
||||
factor->print(ss.str(), keyFormatter);
|
||||
std::cout << "error = ";
|
||||
gmf->error(values.continuous()).print("", DefaultKeyFormatter);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
} else if (auto gm = std::dynamic_pointer_cast<GaussianMixture>(factor)) {
|
||||
if (factor == nullptr) {
|
||||
std::cout << "nullptr"
|
||||
<< "\n";
|
||||
} else {
|
||||
factor->print(ss.str(), keyFormatter);
|
||||
std::cout << "error = ";
|
||||
gm->error(values.continuous()).print("", DefaultKeyFormatter);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
} else if (auto nf = std::dynamic_pointer_cast<NonlinearFactor>(factor)) {
|
||||
const double errorValue = (factor != nullptr ? nf->error(values) : .0);
|
||||
if (!printCondition(factor.get(), errorValue, i))
|
||||
continue; // User-provided filter did not pass
|
||||
|
||||
if (factor == nullptr) {
|
||||
std::cout << "nullptr"
|
||||
<< "\n";
|
||||
} else {
|
||||
factor->print(ss.str(), keyFormatter);
|
||||
std::cout << "error = " << errorValue << "\n";
|
||||
}
|
||||
} else if (auto gf = std::dynamic_pointer_cast<GaussianFactor>(factor)) {
|
||||
const double errorValue = (factor != nullptr ? gf->error(values) : .0);
|
||||
if (!printCondition(factor.get(), errorValue, i))
|
||||
continue; // User-provided filter did not pass
|
||||
|
||||
if (factor == nullptr) {
|
||||
std::cout << "nullptr"
|
||||
<< "\n";
|
||||
} else {
|
||||
factor->print(ss.str(), keyFormatter);
|
||||
std::cout << "error = " << errorValue << "\n";
|
||||
}
|
||||
} else if (auto df = std::dynamic_pointer_cast<DiscreteFactor>(factor)) {
|
||||
if (factor == nullptr) {
|
||||
std::cout << "nullptr"
|
||||
<< "\n";
|
||||
} else {
|
||||
factor->print(ss.str(), keyFormatter);
|
||||
std::cout << "error = ";
|
||||
df->error().print("", DefaultKeyFormatter);
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
|
||||
std::cout << "\n";
|
||||
}
|
||||
std::cout.flush();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridGaussianFactorGraph::shared_ptr HybridNonlinearFactorGraph::linearize(
|
||||
const Values& continuousValues) const {
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@ class GTSAM_EXPORT HybridNonlinearFactorGraph : public HybridFactorGraph {
|
|||
protected:
|
||||
public:
|
||||
using Base = HybridFactorGraph;
|
||||
using This = HybridNonlinearFactorGraph; ///< this class
|
||||
using This = HybridNonlinearFactorGraph; ///< this class
|
||||
using shared_ptr = std::shared_ptr<This>; ///< shared_ptr to This
|
||||
|
||||
using Values = gtsam::Values; ///< backwards compatibility
|
||||
|
|
@ -63,6 +63,16 @@ class GTSAM_EXPORT HybridNonlinearFactorGraph : public HybridFactorGraph {
|
|||
const std::string& s = "HybridNonlinearFactorGraph",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override;
|
||||
|
||||
/** print errors along with factors*/
|
||||
void printErrors(
|
||||
const HybridValues& values,
|
||||
const std::string& str = "HybridNonlinearFactorGraph: ",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter,
|
||||
const std::function<bool(const Factor* /*factor*/,
|
||||
double /*whitenedError*/, size_t /*index*/)>&
|
||||
printCondition =
|
||||
[](const Factor*, double, size_t) { return true; }) const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
|
|
|||
|
|
@ -327,8 +327,8 @@ GaussianFactorGraph::shared_ptr batchGFG(double between,
|
|||
NonlinearFactorGraph graph;
|
||||
graph.addPrior<double>(X(0), 0, Isotropic::Sigma(1, 0.1));
|
||||
|
||||
auto between_x0_x1 = std::make_shared<MotionModel>(
|
||||
X(0), X(1), between, Isotropic::Sigma(1, 1.0));
|
||||
auto between_x0_x1 = std::make_shared<MotionModel>(X(0), X(1), between,
|
||||
Isotropic::Sigma(1, 1.0));
|
||||
|
||||
graph.push_back(between_x0_x1);
|
||||
|
||||
|
|
@ -397,6 +397,25 @@ TEST(HybridFactorGraph, Partial_Elimination) {
|
|||
EXPECT(remainingFactorGraph->at(2)->keys() == KeyVector({M(0), M(1)}));
|
||||
}
|
||||
|
||||
TEST(HybridFactorGraph, PrintErrors) {
|
||||
Switching self(3);
|
||||
|
||||
// Get nonlinear factor graph and add linear factors to be holistic
|
||||
HybridNonlinearFactorGraph fg = self.nonlinearFactorGraph;
|
||||
fg.add(self.linearizedFactorGraph);
|
||||
|
||||
// Optimize to get HybridValues
|
||||
HybridBayesNet::shared_ptr bn =
|
||||
self.linearizedFactorGraph.eliminateSequential();
|
||||
HybridValues hv = bn->optimize();
|
||||
|
||||
// Print and verify
|
||||
fg.print();
|
||||
std::cout << "\n\n\n" << std::endl;
|
||||
fg.printErrors(
|
||||
HybridValues(hv.continuous(), DiscreteValues(), self.linearizationPoint));
|
||||
}
|
||||
|
||||
/****************************************************************************
|
||||
* Test full elimination
|
||||
*/
|
||||
|
|
@ -564,7 +583,7 @@ factor 6: P( m1 | m0 ):
|
|||
|
||||
)";
|
||||
#else
|
||||
string expected_hybridFactorGraph = R"(
|
||||
string expected_hybridFactorGraph = R"(
|
||||
size: 7
|
||||
factor 0:
|
||||
A[x0] = [
|
||||
|
|
@ -759,9 +778,9 @@ TEST(HybridFactorGraph, DefaultDecisionTree) {
|
|||
KeyVector contKeys = {X(0), X(1)};
|
||||
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
auto still = std::make_shared<PlanarMotionModel>(X(0), X(1), Pose2(0, 0, 0),
|
||||
noise_model),
|
||||
noise_model),
|
||||
moving = std::make_shared<PlanarMotionModel>(X(0), X(1), odometry,
|
||||
noise_model);
|
||||
noise_model);
|
||||
std::vector<PlanarMotionModel::shared_ptr> motion_models = {still, moving};
|
||||
fg.emplace_shared<MixtureFactor>(
|
||||
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, motion_models);
|
||||
|
|
@ -788,7 +807,7 @@ TEST(HybridFactorGraph, DefaultDecisionTree) {
|
|||
initialEstimate.insert(L(1), Point2(4.1, 1.8));
|
||||
|
||||
// We want to eliminate variables not connected to DCFactors first.
|
||||
const Ordering ordering {L(0), L(1), X(0), X(1)};
|
||||
const Ordering ordering{L(0), L(1), X(0), X(1)};
|
||||
|
||||
HybridGaussianFactorGraph linearized = *fg.linearize(initialEstimate);
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue