[REFACTOR] Extract LPSolver.cpp from LPSolver.h
parent
796e2d813c
commit
b1949966e9
|
@ -6,6 +6,7 @@
|
|||
*/
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <boost/range/adaptor/map.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
|
|
@ -7,6 +7,9 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam_unstable/linear/LinearCost.h>
|
||||
#include <gtsam_unstable/linear/EqualityFactorGraph.h>
|
||||
|
||||
#include <string>
|
||||
|
||||
namespace gtsam {
|
||||
|
|
|
@ -0,0 +1,203 @@
|
|||
/**
|
||||
* @file LPSolver.cpp
|
||||
* @brief
|
||||
* @author Ivan Dario Jimenez
|
||||
* @date 1/26/16
|
||||
*/
|
||||
|
||||
#include <gtsam_unstable/linear/LPSolver.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
|
||||
|
||||
|
||||
namespace gtsam {
|
||||
LPSolver::LPSolver(const LP &lp) :
|
||||
lp_(lp) {
|
||||
// Push back factors that are the same in every iteration to the base graph.
|
||||
// Those include the equality constraints and zero priors for keys that are not
|
||||
// in the cost
|
||||
baseGraph_.push_back(lp_.equalities);
|
||||
|
||||
// Collect key-dim map of all variables in the constraints to create their zero priors later
|
||||
keysDim_ = collectKeysDim(lp_.equalities);
|
||||
KeyDimMap keysDim2 = collectKeysDim(lp_.inequalities);
|
||||
keysDim_.insert(keysDim2.begin(), keysDim2.end());
|
||||
|
||||
// Create and push zero priors of constrained variables that do not exist in the cost function
|
||||
baseGraph_.push_back(*createZeroPriors(lp_.cost.keys(), keysDim_));
|
||||
|
||||
// Variable index
|
||||
equalityVariableIndex_ = VariableIndex(lp_.equalities);
|
||||
inequalityVariableIndex_ = VariableIndex(lp_.inequalities);
|
||||
constrainedKeys_ = lp_.equalities.keys();
|
||||
constrainedKeys_.merge(lp_.inequalities.keys());
|
||||
}
|
||||
|
||||
GaussianFactorGraph::shared_ptr LPSolver::createZeroPriors(
|
||||
const KeyVector &costKeys, const KeyDimMap &keysDim) const {
|
||||
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
|
||||
BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys) {
|
||||
if (find(costKeys.begin(), costKeys.end(), key) == costKeys.end()) {
|
||||
size_t dim = keysDim.at(key);
|
||||
graph->push_back(JacobianFactor(key, eye(dim), zero(dim)));
|
||||
}
|
||||
}
|
||||
return graph;
|
||||
}
|
||||
|
||||
LPState LPSolver::iterate(const LPState &state) const {
|
||||
// Solve with the current working set
|
||||
// LP: project the objective neggradient to the constraint's null space
|
||||
// to find the direction to move
|
||||
VectorValues newValues = solveWithCurrentWorkingSet(state.values,
|
||||
state.workingSet);
|
||||
// If we CAN'T move further
|
||||
// LP: projection on the constraints' nullspace is zero: we are at a vertex
|
||||
if (newValues.equals(state.values, 1e-7)) {
|
||||
// Find and remove the bad ineq constraint by computing its lambda
|
||||
// Compute lambda from the dual graph
|
||||
// LP: project the objective's gradient onto each constraint gradient to obtain the dual scaling factors
|
||||
// is it true??
|
||||
GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
|
||||
newValues);
|
||||
VectorValues duals = dualGraph->optimize();
|
||||
// LP: see which ineq constraint has wrong pulling direction, i.e., dual < 0
|
||||
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
|
||||
// If all inequality constraints are satisfied: We have the solution!!
|
||||
if (leavingFactor < 0) {
|
||||
// TODO If we still have infeasible equality constraints: the problem is over-constrained. No solution!
|
||||
// ...
|
||||
return LPState(newValues, duals, state.workingSet, true,
|
||||
state.iterations + 1);
|
||||
} else {
|
||||
// Inactivate the leaving constraint
|
||||
// LP: remove the bad ineq constraint out of the working set
|
||||
InequalityFactorGraph newWorkingSet = state.workingSet;
|
||||
newWorkingSet.at(leavingFactor)->inactivate();
|
||||
return LPState(newValues, duals, newWorkingSet, false,
|
||||
state.iterations + 1);
|
||||
}
|
||||
} else {
|
||||
// If we CAN make some progress, i.e. p_k != 0
|
||||
// Adapt stepsize if some inactive constraints complain about this move
|
||||
// LP: projection on nullspace is NOT zero:
|
||||
// find and put a blocking inactive constraint to the working set,
|
||||
// otherwise the problem is unbounded!!!
|
||||
double alpha;
|
||||
int factorIx;
|
||||
VectorValues p = newValues - state.values;
|
||||
boost::tie(alpha, factorIx) = // using 16.41
|
||||
computeStepSize(state.workingSet, state.values, p);
|
||||
// also add to the working set the one that complains the most
|
||||
InequalityFactorGraph newWorkingSet = state.workingSet;
|
||||
if (factorIx >= 0)
|
||||
newWorkingSet.at(factorIx)->activate();
|
||||
// step!
|
||||
newValues = state.values + alpha * p;
|
||||
return LPState(newValues, state.duals, newWorkingSet, false,
|
||||
state.iterations + 1);
|
||||
}
|
||||
}
|
||||
|
||||
GaussianFactorGraph::shared_ptr LPSolver::createLeastSquareFactors(
|
||||
const LinearCost &cost, const VectorValues &xk) const {
|
||||
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
|
||||
KeyVector keys = cost.keys();
|
||||
|
||||
for (LinearCost::const_iterator it = cost.begin(); it != cost.end(); ++it) {
|
||||
size_t dim = cost.getDim(it);
|
||||
Vector b = xk.at(*it) - cost.getA(it).transpose(); // b = xk-g
|
||||
graph->push_back(JacobianFactor(*it, eye(dim), b));
|
||||
}
|
||||
|
||||
return graph;
|
||||
}
|
||||
|
||||
VectorValues LPSolver::solveWithCurrentWorkingSet(
|
||||
const VectorValues &xk,
|
||||
const InequalityFactorGraph &workingSet) const {
|
||||
GaussianFactorGraph workingGraph = baseGraph_; // || X - Xk + g ||^2
|
||||
workingGraph.push_back(*createLeastSquareFactors(lp_.cost, xk));
|
||||
|
||||
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, workingSet) {
|
||||
if (factor->active()) workingGraph.push_back(factor);
|
||||
}
|
||||
return workingGraph.optimize();
|
||||
}
|
||||
|
||||
boost::shared_ptr<JacobianFactor> LPSolver::createDualFactor(
|
||||
Key key,
|
||||
const InequalityFactorGraph &workingSet,
|
||||
const VectorValues &delta) const {
|
||||
|
||||
// Transpose the A matrix of constrained factors to have the jacobian of the dual key
|
||||
TermsContainer Aterms = collectDualJacobians < LinearEquality
|
||||
> (key, lp_.equalities, equalityVariableIndex_);
|
||||
TermsContainer AtermsInequalities = collectDualJacobians < LinearInequality
|
||||
> (key, workingSet, inequalityVariableIndex_);
|
||||
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
|
||||
AtermsInequalities.end());
|
||||
|
||||
// Collect the gradients of unconstrained cost factors to the b vector
|
||||
if (Aterms.size() > 0) {
|
||||
Vector b = zero(delta.at(key).size());
|
||||
Factor::const_iterator it = lp_.cost.find(key);
|
||||
if (it != lp_.cost.end())
|
||||
b = lp_.cost.getA(it).transpose();
|
||||
return boost::make_shared < JacobianFactor > (Aterms, b); // compute the least-square approximation of dual variables
|
||||
} else {
|
||||
return boost::make_shared<JacobianFactor>();
|
||||
}
|
||||
}
|
||||
|
||||
InequalityFactorGraph LPSolver::identifyActiveConstraints(
|
||||
const InequalityFactorGraph &inequalities,
|
||||
const VectorValues &initialValues,
|
||||
const VectorValues &duals) const {
|
||||
InequalityFactorGraph workingSet;
|
||||
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, inequalities) {
|
||||
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
|
||||
|
||||
double error = workingFactor->error(initialValues);
|
||||
// TODO: find a feasible initial point for LPSolver.
|
||||
// For now, we just throw an exception
|
||||
if (error > 0) throw InfeasibleInitialValues();
|
||||
|
||||
if (fabs(error) < 1e-7) {
|
||||
workingFactor->activate();
|
||||
}
|
||||
else {
|
||||
workingFactor->inactivate();
|
||||
}
|
||||
workingSet.push_back(workingFactor);
|
||||
}
|
||||
return workingSet;
|
||||
}
|
||||
|
||||
std::pair<VectorValues, VectorValues> LPSolver::optimize(
|
||||
const VectorValues &initialValues,
|
||||
const VectorValues &duals) const {
|
||||
{
|
||||
|
||||
// Initialize workingSet from the feasible initialValues
|
||||
InequalityFactorGraph workingSet = identifyActiveConstraints(
|
||||
lp_.inequalities, initialValues, duals);
|
||||
LPState state(initialValues, duals, workingSet, false, 0);
|
||||
|
||||
/// main loop of the solver
|
||||
while (!state.converged) {
|
||||
state = iterate(state);
|
||||
}
|
||||
|
||||
return make_pair(state.values, state.duals);
|
||||
}
|
||||
}
|
||||
|
||||
boost::tuples::tuple<double, int> LPSolver::computeStepSize(
|
||||
const InequalityFactorGraph &workingSet,
|
||||
const VectorValues &xk,
|
||||
const VectorValues &p) const {
|
||||
return ActiveSetSolver::computeStepSize(workingSet, xk, p,
|
||||
std::numeric_limits<double>::infinity());
|
||||
}
|
||||
}
|
|
@ -14,6 +14,7 @@
|
|||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
typedef std::map<Key, size_t> KeyDimMap;
|
||||
|
||||
class LPSolver: public ActiveSetSolver {
|
||||
|
@ -22,27 +23,7 @@ class LPSolver: public ActiveSetSolver {
|
|||
|
||||
public:
|
||||
/// Constructor
|
||||
LPSolver(const LP& lp) :
|
||||
lp_(lp) {
|
||||
// Push back factors that are the same in every iteration to the base graph.
|
||||
// Those include the equality constraints and zero priors for keys that are not
|
||||
// in the cost
|
||||
baseGraph_.push_back(lp_.equalities);
|
||||
|
||||
// Collect key-dim map of all variables in the constraints to create their zero priors later
|
||||
keysDim_ = collectKeysDim(lp_.equalities);
|
||||
KeyDimMap keysDim2 = collectKeysDim(lp_.inequalities);
|
||||
keysDim_.insert(keysDim2.begin(), keysDim2.end());
|
||||
|
||||
// Create and push zero priors of constrained variables that do not exist in the cost function
|
||||
baseGraph_.push_back(*createZeroPriors(lp_.cost.keys(), keysDim_));
|
||||
|
||||
// Variable index
|
||||
equalityVariableIndex_ = VariableIndex(lp_.equalities);
|
||||
inequalityVariableIndex_ = VariableIndex(lp_.inequalities);
|
||||
constrainedKeys_ = lp_.equalities.keys();
|
||||
constrainedKeys_.merge(lp_.inequalities.keys());
|
||||
}
|
||||
LPSolver(const LP& lp);
|
||||
|
||||
const LP& lp() const {
|
||||
return lp_;
|
||||
|
@ -68,71 +49,10 @@ public:
|
|||
* Create a zero prior for any keys in the graph that don't exist in the cost
|
||||
*/
|
||||
GaussianFactorGraph::shared_ptr createZeroPriors(const KeyVector& costKeys,
|
||||
const KeyDimMap& keysDim) const {
|
||||
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
|
||||
BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys) {
|
||||
if (find(costKeys.begin(), costKeys.end(), key) == costKeys.end()) {
|
||||
size_t dim = keysDim.at(key);
|
||||
graph->push_back(JacobianFactor(key, eye(dim), zero(dim)));
|
||||
}
|
||||
}
|
||||
return graph;
|
||||
}
|
||||
const KeyDimMap& keysDim) const;
|
||||
|
||||
//******************************************************************************
|
||||
LPState iterate(const LPState& state) const {
|
||||
// Solve with the current working set
|
||||
// LP: project the objective neggradient to the constraint's null space
|
||||
// to find the direction to move
|
||||
VectorValues newValues = solveWithCurrentWorkingSet(state.values,
|
||||
state.workingSet);
|
||||
// If we CAN'T move further
|
||||
// LP: projection on the constraints' nullspace is zero: we are at a vertex
|
||||
if (newValues.equals(state.values, 1e-7)) {
|
||||
// Find and remove the bad ineq constraint by computing its lambda
|
||||
// Compute lambda from the dual graph
|
||||
// LP: project the objective's gradient onto each constraint gradient to obtain the dual scaling factors
|
||||
// is it true??
|
||||
GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(
|
||||
state.workingSet, newValues);
|
||||
VectorValues duals = dualGraph->optimize();
|
||||
// LP: see which ineq constraint has wrong pulling direction, i.e., dual < 0
|
||||
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
|
||||
// If all inequality constraints are satisfied: We have the solution!!
|
||||
if (leavingFactor < 0) {
|
||||
// TODO If we still have infeasible equality constraints: the problem is over-constrained. No solution!
|
||||
// ...
|
||||
return LPState(newValues, duals, state.workingSet, true,
|
||||
state.iterations + 1);
|
||||
} else {
|
||||
// Inactivate the leaving constraint
|
||||
// LP: remove the bad ineq constraint out of the working set
|
||||
InequalityFactorGraph newWorkingSet = state.workingSet;
|
||||
newWorkingSet.at(leavingFactor)->inactivate();
|
||||
return LPState(newValues, duals, newWorkingSet, false,
|
||||
state.iterations + 1);
|
||||
}
|
||||
} else {
|
||||
// If we CAN make some progress, i.e. p_k != 0
|
||||
// Adapt stepsize if some inactive constraints complain about this move
|
||||
// LP: projection on nullspace is NOT zero:
|
||||
// find and put a blocking inactive constraint to the working set,
|
||||
// otherwise the problem is unbounded!!!
|
||||
double alpha;
|
||||
int factorIx;
|
||||
VectorValues p = newValues - state.values;
|
||||
boost::tie(alpha, factorIx) = // using 16.41
|
||||
computeStepSize(state.workingSet, state.values, p);
|
||||
// also add to the working set the one that complains the most
|
||||
InequalityFactorGraph newWorkingSet = state.workingSet;
|
||||
if (factorIx >= 0)
|
||||
newWorkingSet.at(factorIx)->activate();
|
||||
// step!
|
||||
newValues = state.values + alpha * p;
|
||||
return LPState(newValues, state.duals, newWorkingSet, false,
|
||||
state.iterations + 1);
|
||||
}
|
||||
}
|
||||
LPState iterate(const LPState& state) const;
|
||||
|
||||
//******************************************************************************
|
||||
/**
|
||||
|
@ -148,107 +68,32 @@ public:
|
|||
* is the projection of the gradient onto the constraints' subspace
|
||||
*/
|
||||
GaussianFactorGraph::shared_ptr createLeastSquareFactors(
|
||||
const LinearCost& cost, const VectorValues& xk) const {
|
||||
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
|
||||
KeyVector keys = cost.keys();
|
||||
|
||||
for (LinearCost::const_iterator it = cost.begin(); it != cost.end(); ++it) {
|
||||
size_t dim = cost.getDim(it);
|
||||
Vector b = xk.at(*it) - cost.getA(it).transpose(); // b = xk-g
|
||||
graph->push_back(JacobianFactor(*it, eye(dim), b));
|
||||
}
|
||||
|
||||
return graph;
|
||||
}
|
||||
const LinearCost& cost, const VectorValues& xk) const;
|
||||
|
||||
/// Find solution with the current working set
|
||||
VectorValues solveWithCurrentWorkingSet(const VectorValues& xk,
|
||||
const InequalityFactorGraph& workingSet) const {
|
||||
GaussianFactorGraph workingGraph = baseGraph_; // || X - Xk + g ||^2
|
||||
workingGraph.push_back(*createLeastSquareFactors(lp_.cost, xk));
|
||||
|
||||
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, workingSet) {
|
||||
if (factor->active()) workingGraph.push_back(factor);
|
||||
}
|
||||
return workingGraph.optimize();
|
||||
}
|
||||
const InequalityFactorGraph& workingSet) const;
|
||||
|
||||
//******************************************************************************
|
||||
JacobianFactor::shared_ptr createDualFactor(Key key,
|
||||
const InequalityFactorGraph& workingSet,
|
||||
const VectorValues& delta) const {
|
||||
|
||||
// Transpose the A matrix of constrained factors to have the jacobian of the dual key
|
||||
TermsContainer Aterms = collectDualJacobians < LinearEquality
|
||||
> (key, lp_.equalities, equalityVariableIndex_);
|
||||
TermsContainer AtermsInequalities = collectDualJacobians < LinearInequality
|
||||
> (key, workingSet, inequalityVariableIndex_);
|
||||
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
|
||||
AtermsInequalities.end());
|
||||
|
||||
// Collect the gradients of unconstrained cost factors to the b vector
|
||||
if (Aterms.size() > 0) {
|
||||
Vector b = zero(delta.at(key).size());
|
||||
Factor::const_iterator it = lp_.cost.find(key);
|
||||
if (it != lp_.cost.end())
|
||||
b = lp_.cost.getA(it).transpose();
|
||||
return boost::make_shared < JacobianFactor > (Aterms, b); // compute the least-square approximation of dual variables
|
||||
} else {
|
||||
return boost::make_shared<JacobianFactor>();
|
||||
}
|
||||
}
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& delta) const;
|
||||
|
||||
//******************************************************************************
|
||||
boost::tuple<double, int> computeStepSize(
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& xk,
|
||||
const VectorValues& p) const {
|
||||
return ActiveSetSolver::computeStepSize(workingSet, xk, p,
|
||||
std::numeric_limits<double>::infinity());
|
||||
}
|
||||
const VectorValues& p) const;
|
||||
|
||||
//******************************************************************************
|
||||
InequalityFactorGraph identifyActiveConstraints(
|
||||
const InequalityFactorGraph& inequalities,
|
||||
const VectorValues& initialValues, const VectorValues& duals) const {
|
||||
InequalityFactorGraph workingSet;
|
||||
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, inequalities) {
|
||||
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
|
||||
|
||||
double error = workingFactor->error(initialValues);
|
||||
// TODO: find a feasible initial point for LPSolver.
|
||||
// For now, we just throw an exception
|
||||
if (error > 0) throw InfeasibleInitialValues();
|
||||
|
||||
if (fabs(error) < 1e-7) {
|
||||
workingFactor->activate();
|
||||
}
|
||||
else {
|
||||
workingFactor->inactivate();
|
||||
}
|
||||
workingSet.push_back(workingFactor);
|
||||
}
|
||||
return workingSet;
|
||||
}
|
||||
const VectorValues& initialValues, const VectorValues& duals) const;
|
||||
|
||||
//******************************************************************************
|
||||
/** Optimize with the provided feasible initial values
|
||||
* TODO: throw exception if the initial values is not feasible wrt inequality constraints
|
||||
*/
|
||||
pair<VectorValues, VectorValues> optimize(const VectorValues& initialValues,
|
||||
const VectorValues& duals = VectorValues()) const {
|
||||
|
||||
// Initialize workingSet from the feasible initialValues
|
||||
InequalityFactorGraph workingSet = identifyActiveConstraints(
|
||||
lp_.inequalities, initialValues, duals);
|
||||
LPState state(initialValues, duals, workingSet, false, 0);
|
||||
|
||||
/// main loop of the solver
|
||||
while (!state.converged) {
|
||||
state = iterate(state);
|
||||
}
|
||||
|
||||
return make_pair(state.values, state.duals);
|
||||
}
|
||||
const VectorValues& duals = VectorValues()) const;
|
||||
|
||||
//******************************************************************************
|
||||
/**
|
||||
|
|
|
@ -5,6 +5,9 @@
|
|||
* @date 1/24/16
|
||||
*/
|
||||
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include "InequalityFactorGraph.h"
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
struct LPState {
|
||||
|
|
Loading…
Reference in New Issue