[REFACTOR] Extract LPSolver.cpp from LPSolver.h

release/4.3a0
Ivan Jimenez 2016-01-26 09:34:05 -05:00
parent 796e2d813c
commit b1949966e9
5 changed files with 220 additions and 165 deletions

View File

@ -6,6 +6,7 @@
*/
#pragma once
#include <gtsam/linear/GaussianFactorGraph.h>
#include <boost/range/adaptor/map.hpp>
namespace gtsam {

View File

@ -7,6 +7,9 @@
#pragma once
#include <gtsam_unstable/linear/LinearCost.h>
#include <gtsam_unstable/linear/EqualityFactorGraph.h>
#include <string>
namespace gtsam {

View File

@ -0,0 +1,203 @@
/**
* @file LPSolver.cpp
* @brief
* @author Ivan Dario Jimenez
* @date 1/26/16
*/
#include <gtsam_unstable/linear/LPSolver.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
namespace gtsam {
LPSolver::LPSolver(const LP &lp) :
lp_(lp) {
// Push back factors that are the same in every iteration to the base graph.
// Those include the equality constraints and zero priors for keys that are not
// in the cost
baseGraph_.push_back(lp_.equalities);
// Collect key-dim map of all variables in the constraints to create their zero priors later
keysDim_ = collectKeysDim(lp_.equalities);
KeyDimMap keysDim2 = collectKeysDim(lp_.inequalities);
keysDim_.insert(keysDim2.begin(), keysDim2.end());
// Create and push zero priors of constrained variables that do not exist in the cost function
baseGraph_.push_back(*createZeroPriors(lp_.cost.keys(), keysDim_));
// Variable index
equalityVariableIndex_ = VariableIndex(lp_.equalities);
inequalityVariableIndex_ = VariableIndex(lp_.inequalities);
constrainedKeys_ = lp_.equalities.keys();
constrainedKeys_.merge(lp_.inequalities.keys());
}
GaussianFactorGraph::shared_ptr LPSolver::createZeroPriors(
const KeyVector &costKeys, const KeyDimMap &keysDim) const {
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys) {
if (find(costKeys.begin(), costKeys.end(), key) == costKeys.end()) {
size_t dim = keysDim.at(key);
graph->push_back(JacobianFactor(key, eye(dim), zero(dim)));
}
}
return graph;
}
LPState LPSolver::iterate(const LPState &state) const {
// Solve with the current working set
// LP: project the objective neggradient to the constraint's null space
// to find the direction to move
VectorValues newValues = solveWithCurrentWorkingSet(state.values,
state.workingSet);
// If we CAN'T move further
// LP: projection on the constraints' nullspace is zero: we are at a vertex
if (newValues.equals(state.values, 1e-7)) {
// Find and remove the bad ineq constraint by computing its lambda
// Compute lambda from the dual graph
// LP: project the objective's gradient onto each constraint gradient to obtain the dual scaling factors
// is it true??
GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
newValues);
VectorValues duals = dualGraph->optimize();
// LP: see which ineq constraint has wrong pulling direction, i.e., dual < 0
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
// If all inequality constraints are satisfied: We have the solution!!
if (leavingFactor < 0) {
// TODO If we still have infeasible equality constraints: the problem is over-constrained. No solution!
// ...
return LPState(newValues, duals, state.workingSet, true,
state.iterations + 1);
} else {
// Inactivate the leaving constraint
// LP: remove the bad ineq constraint out of the working set
InequalityFactorGraph newWorkingSet = state.workingSet;
newWorkingSet.at(leavingFactor)->inactivate();
return LPState(newValues, duals, newWorkingSet, false,
state.iterations + 1);
}
} else {
// If we CAN make some progress, i.e. p_k != 0
// Adapt stepsize if some inactive constraints complain about this move
// LP: projection on nullspace is NOT zero:
// find and put a blocking inactive constraint to the working set,
// otherwise the problem is unbounded!!!
double alpha;
int factorIx;
VectorValues p = newValues - state.values;
boost::tie(alpha, factorIx) = // using 16.41
computeStepSize(state.workingSet, state.values, p);
// also add to the working set the one that complains the most
InequalityFactorGraph newWorkingSet = state.workingSet;
if (factorIx >= 0)
newWorkingSet.at(factorIx)->activate();
// step!
newValues = state.values + alpha * p;
return LPState(newValues, state.duals, newWorkingSet, false,
state.iterations + 1);
}
}
GaussianFactorGraph::shared_ptr LPSolver::createLeastSquareFactors(
const LinearCost &cost, const VectorValues &xk) const {
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
KeyVector keys = cost.keys();
for (LinearCost::const_iterator it = cost.begin(); it != cost.end(); ++it) {
size_t dim = cost.getDim(it);
Vector b = xk.at(*it) - cost.getA(it).transpose(); // b = xk-g
graph->push_back(JacobianFactor(*it, eye(dim), b));
}
return graph;
}
VectorValues LPSolver::solveWithCurrentWorkingSet(
const VectorValues &xk,
const InequalityFactorGraph &workingSet) const {
GaussianFactorGraph workingGraph = baseGraph_; // || X - Xk + g ||^2
workingGraph.push_back(*createLeastSquareFactors(lp_.cost, xk));
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, workingSet) {
if (factor->active()) workingGraph.push_back(factor);
}
return workingGraph.optimize();
}
boost::shared_ptr<JacobianFactor> LPSolver::createDualFactor(
Key key,
const InequalityFactorGraph &workingSet,
const VectorValues &delta) const {
// Transpose the A matrix of constrained factors to have the jacobian of the dual key
TermsContainer Aterms = collectDualJacobians < LinearEquality
> (key, lp_.equalities, equalityVariableIndex_);
TermsContainer AtermsInequalities = collectDualJacobians < LinearInequality
> (key, workingSet, inequalityVariableIndex_);
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
AtermsInequalities.end());
// Collect the gradients of unconstrained cost factors to the b vector
if (Aterms.size() > 0) {
Vector b = zero(delta.at(key).size());
Factor::const_iterator it = lp_.cost.find(key);
if (it != lp_.cost.end())
b = lp_.cost.getA(it).transpose();
return boost::make_shared < JacobianFactor > (Aterms, b); // compute the least-square approximation of dual variables
} else {
return boost::make_shared<JacobianFactor>();
}
}
InequalityFactorGraph LPSolver::identifyActiveConstraints(
const InequalityFactorGraph &inequalities,
const VectorValues &initialValues,
const VectorValues &duals) const {
InequalityFactorGraph workingSet;
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, inequalities) {
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
double error = workingFactor->error(initialValues);
// TODO: find a feasible initial point for LPSolver.
// For now, we just throw an exception
if (error > 0) throw InfeasibleInitialValues();
if (fabs(error) < 1e-7) {
workingFactor->activate();
}
else {
workingFactor->inactivate();
}
workingSet.push_back(workingFactor);
}
return workingSet;
}
std::pair<VectorValues, VectorValues> LPSolver::optimize(
const VectorValues &initialValues,
const VectorValues &duals) const {
{
// Initialize workingSet from the feasible initialValues
InequalityFactorGraph workingSet = identifyActiveConstraints(
lp_.inequalities, initialValues, duals);
LPState state(initialValues, duals, workingSet, false, 0);
/// main loop of the solver
while (!state.converged) {
state = iterate(state);
}
return make_pair(state.values, state.duals);
}
}
boost::tuples::tuple<double, int> LPSolver::computeStepSize(
const InequalityFactorGraph &workingSet,
const VectorValues &xk,
const VectorValues &p) const {
return ActiveSetSolver::computeStepSize(workingSet, xk, p,
std::numeric_limits<double>::infinity());
}
}

View File

@ -14,6 +14,7 @@
#include <gtsam/linear/VectorValues.h>
namespace gtsam {
typedef std::map<Key, size_t> KeyDimMap;
class LPSolver: public ActiveSetSolver {
@ -22,27 +23,7 @@ class LPSolver: public ActiveSetSolver {
public:
/// Constructor
LPSolver(const LP& lp) :
lp_(lp) {
// Push back factors that are the same in every iteration to the base graph.
// Those include the equality constraints and zero priors for keys that are not
// in the cost
baseGraph_.push_back(lp_.equalities);
// Collect key-dim map of all variables in the constraints to create their zero priors later
keysDim_ = collectKeysDim(lp_.equalities);
KeyDimMap keysDim2 = collectKeysDim(lp_.inequalities);
keysDim_.insert(keysDim2.begin(), keysDim2.end());
// Create and push zero priors of constrained variables that do not exist in the cost function
baseGraph_.push_back(*createZeroPriors(lp_.cost.keys(), keysDim_));
// Variable index
equalityVariableIndex_ = VariableIndex(lp_.equalities);
inequalityVariableIndex_ = VariableIndex(lp_.inequalities);
constrainedKeys_ = lp_.equalities.keys();
constrainedKeys_.merge(lp_.inequalities.keys());
}
LPSolver(const LP& lp);
const LP& lp() const {
return lp_;
@ -68,71 +49,10 @@ public:
* Create a zero prior for any keys in the graph that don't exist in the cost
*/
GaussianFactorGraph::shared_ptr createZeroPriors(const KeyVector& costKeys,
const KeyDimMap& keysDim) const {
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys) {
if (find(costKeys.begin(), costKeys.end(), key) == costKeys.end()) {
size_t dim = keysDim.at(key);
graph->push_back(JacobianFactor(key, eye(dim), zero(dim)));
}
}
return graph;
}
const KeyDimMap& keysDim) const;
//******************************************************************************
LPState iterate(const LPState& state) const {
// Solve with the current working set
// LP: project the objective neggradient to the constraint's null space
// to find the direction to move
VectorValues newValues = solveWithCurrentWorkingSet(state.values,
state.workingSet);
// If we CAN'T move further
// LP: projection on the constraints' nullspace is zero: we are at a vertex
if (newValues.equals(state.values, 1e-7)) {
// Find and remove the bad ineq constraint by computing its lambda
// Compute lambda from the dual graph
// LP: project the objective's gradient onto each constraint gradient to obtain the dual scaling factors
// is it true??
GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(
state.workingSet, newValues);
VectorValues duals = dualGraph->optimize();
// LP: see which ineq constraint has wrong pulling direction, i.e., dual < 0
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
// If all inequality constraints are satisfied: We have the solution!!
if (leavingFactor < 0) {
// TODO If we still have infeasible equality constraints: the problem is over-constrained. No solution!
// ...
return LPState(newValues, duals, state.workingSet, true,
state.iterations + 1);
} else {
// Inactivate the leaving constraint
// LP: remove the bad ineq constraint out of the working set
InequalityFactorGraph newWorkingSet = state.workingSet;
newWorkingSet.at(leavingFactor)->inactivate();
return LPState(newValues, duals, newWorkingSet, false,
state.iterations + 1);
}
} else {
// If we CAN make some progress, i.e. p_k != 0
// Adapt stepsize if some inactive constraints complain about this move
// LP: projection on nullspace is NOT zero:
// find and put a blocking inactive constraint to the working set,
// otherwise the problem is unbounded!!!
double alpha;
int factorIx;
VectorValues p = newValues - state.values;
boost::tie(alpha, factorIx) = // using 16.41
computeStepSize(state.workingSet, state.values, p);
// also add to the working set the one that complains the most
InequalityFactorGraph newWorkingSet = state.workingSet;
if (factorIx >= 0)
newWorkingSet.at(factorIx)->activate();
// step!
newValues = state.values + alpha * p;
return LPState(newValues, state.duals, newWorkingSet, false,
state.iterations + 1);
}
}
LPState iterate(const LPState& state) const;
//******************************************************************************
/**
@ -148,107 +68,32 @@ public:
* is the projection of the gradient onto the constraints' subspace
*/
GaussianFactorGraph::shared_ptr createLeastSquareFactors(
const LinearCost& cost, const VectorValues& xk) const {
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
KeyVector keys = cost.keys();
for (LinearCost::const_iterator it = cost.begin(); it != cost.end(); ++it) {
size_t dim = cost.getDim(it);
Vector b = xk.at(*it) - cost.getA(it).transpose(); // b = xk-g
graph->push_back(JacobianFactor(*it, eye(dim), b));
}
return graph;
}
const LinearCost& cost, const VectorValues& xk) const;
/// Find solution with the current working set
VectorValues solveWithCurrentWorkingSet(const VectorValues& xk,
const InequalityFactorGraph& workingSet) const {
GaussianFactorGraph workingGraph = baseGraph_; // || X - Xk + g ||^2
workingGraph.push_back(*createLeastSquareFactors(lp_.cost, xk));
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, workingSet) {
if (factor->active()) workingGraph.push_back(factor);
}
return workingGraph.optimize();
}
const InequalityFactorGraph& workingSet) const;
//******************************************************************************
JacobianFactor::shared_ptr createDualFactor(Key key,
const InequalityFactorGraph& workingSet,
const VectorValues& delta) const {
// Transpose the A matrix of constrained factors to have the jacobian of the dual key
TermsContainer Aterms = collectDualJacobians < LinearEquality
> (key, lp_.equalities, equalityVariableIndex_);
TermsContainer AtermsInequalities = collectDualJacobians < LinearInequality
> (key, workingSet, inequalityVariableIndex_);
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
AtermsInequalities.end());
// Collect the gradients of unconstrained cost factors to the b vector
if (Aterms.size() > 0) {
Vector b = zero(delta.at(key).size());
Factor::const_iterator it = lp_.cost.find(key);
if (it != lp_.cost.end())
b = lp_.cost.getA(it).transpose();
return boost::make_shared < JacobianFactor > (Aterms, b); // compute the least-square approximation of dual variables
} else {
return boost::make_shared<JacobianFactor>();
}
}
const InequalityFactorGraph& workingSet, const VectorValues& delta) const;
//******************************************************************************
boost::tuple<double, int> computeStepSize(
const InequalityFactorGraph& workingSet, const VectorValues& xk,
const VectorValues& p) const {
return ActiveSetSolver::computeStepSize(workingSet, xk, p,
std::numeric_limits<double>::infinity());
}
const VectorValues& p) const;
//******************************************************************************
InequalityFactorGraph identifyActiveConstraints(
const InequalityFactorGraph& inequalities,
const VectorValues& initialValues, const VectorValues& duals) const {
InequalityFactorGraph workingSet;
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, inequalities) {
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
double error = workingFactor->error(initialValues);
// TODO: find a feasible initial point for LPSolver.
// For now, we just throw an exception
if (error > 0) throw InfeasibleInitialValues();
if (fabs(error) < 1e-7) {
workingFactor->activate();
}
else {
workingFactor->inactivate();
}
workingSet.push_back(workingFactor);
}
return workingSet;
}
const VectorValues& initialValues, const VectorValues& duals) const;
//******************************************************************************
/** Optimize with the provided feasible initial values
* TODO: throw exception if the initial values is not feasible wrt inequality constraints
*/
pair<VectorValues, VectorValues> optimize(const VectorValues& initialValues,
const VectorValues& duals = VectorValues()) const {
// Initialize workingSet from the feasible initialValues
InequalityFactorGraph workingSet = identifyActiveConstraints(
lp_.inequalities, initialValues, duals);
LPState state(initialValues, duals, workingSet, false, 0);
/// main loop of the solver
while (!state.converged) {
state = iterate(state);
}
return make_pair(state.values, state.duals);
}
const VectorValues& duals = VectorValues()) const;
//******************************************************************************
/**

View File

@ -5,6 +5,9 @@
* @date 1/24/16
*/
#include <gtsam/linear/VectorValues.h>
#include "InequalityFactorGraph.h"
namespace gtsam {
struct LPState {