No more functor for Q
parent
98697251bd
commit
b11387167d
|
|
@ -22,6 +22,7 @@
|
|||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
#include "gtsam/geometry/Rot3.h"
|
||||
|
||||
namespace gtsam {
|
||||
|
|
@ -239,30 +240,14 @@ Vector6 Pose3::ChartAtOrigin::Local(const Pose3& pose, ChartJacobian Hpose) {
|
|||
#endif
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
namespace pose3 {
|
||||
struct GTSAM_EXPORT ExpmapFunctor : public so3::DexpFunctor {
|
||||
ExpmapFunctor(const Vector3& omega, bool nearZeroApprox = false)
|
||||
: so3::DexpFunctor(omega, nearZeroApprox) {
|
||||
}
|
||||
|
||||
// Compute the bottom-left 3x3 block of the SE(3) Expmap derivative.
|
||||
Matrix3 computeQ(const Vector3& v) const {
|
||||
// X translate from left to right for our right expmap convention:
|
||||
Matrix X = rightJacobian() * leftJacobianInverse();
|
||||
Matrix3 H;
|
||||
applyLeftJacobian(v, H);
|
||||
return X * H;
|
||||
}
|
||||
};
|
||||
} // namespace pose3
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix3 Pose3::ComputeQforExpmapDerivative(const Vector6& xi,
|
||||
double nearZeroThreshold) {
|
||||
const auto w = xi.head<3>();
|
||||
const auto v = xi.tail<3>();
|
||||
return pose3::ExpmapFunctor(w).computeQ(v);
|
||||
Matrix3 Q;
|
||||
ExpmapTranslation(w, v, Q, {}, nearZeroThreshold);
|
||||
return Q;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -273,13 +258,22 @@ Vector3 Pose3::ExpmapTranslation(const Vector3& w, const Vector3& v,
|
|||
const double theta2 = w.dot(w);
|
||||
bool nearZero = (theta2 <= nearZeroThreshold);
|
||||
|
||||
if (Q) *Q = pose3::ExpmapFunctor(w, nearZero).computeQ(v);
|
||||
|
||||
if (nearZero) {
|
||||
return v + 0.5 * w.cross(v);
|
||||
if (Q) {
|
||||
// Instantiate functor for Dexp-related operations:
|
||||
so3::DexpFunctor local(w, nearZero);
|
||||
// X translate from left to right for our right expmap convention:
|
||||
Matrix3 X = local.rightJacobian() * local.leftJacobianInverse();
|
||||
Matrix3 H;
|
||||
Vector t = local.applyLeftJacobian(v, H);
|
||||
*Q = X * H;
|
||||
return t;
|
||||
} else if (nearZero) {
|
||||
// (I_3x3 + B * W + C * WW) * v with B->0.5, C->1/6
|
||||
Vector3 Wv = w.cross(v);
|
||||
return v + 0.5 * Wv + w.cross(Wv) * so3::DexpFunctor::one_sixth;
|
||||
} else {
|
||||
// NOTE(Frank): t can also be computed by calling applyLeftJacobian(v), but
|
||||
// formulas below convey geometric insight and creating functor is not free.
|
||||
// NOTE(Frank): if Q is not asked we use formulas below instead of calling
|
||||
// applyLeftJacobian(v), as they convey geometric insight and are faster.
|
||||
Vector3 t_parallel = w * w.dot(v); // translation parallel to axis
|
||||
Vector3 w_cross_v = w.cross(v); // translation orthogonal to axis
|
||||
Rot3 rotation = R.value_or(Rot3::Expmap(w));
|
||||
|
|
@ -314,7 +308,6 @@ const Point3& Pose3::translation(OptionalJacobian<3, 6> Hself) const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
const Rot3& Pose3::rotation(OptionalJacobian<3, 6> Hself) const {
|
||||
if (Hself) {
|
||||
*Hself << I_3x3, Z_3x3;
|
||||
|
|
|
|||
|
|
@ -900,17 +900,6 @@ TEST(Pose3, ExpmapDerivative4) {
|
|||
}
|
||||
}
|
||||
|
||||
TEST( Pose3, ExpmapDerivativeQr) {
|
||||
Vector6 w = Vector6::Random();
|
||||
w.head<3>().normalize();
|
||||
w.head<3>() = w.head<3>() * 0.9e-2;
|
||||
Matrix3 actualQr = Pose3::ComputeQforExpmapDerivative(w, 0.01);
|
||||
Matrix expectedH = numericalDerivative21<Pose3, Vector6,
|
||||
OptionalJacobian<6, 6> >(&Pose3::Expmap, w, {});
|
||||
Matrix3 expectedQr = expectedH.bottomLeftCorner<3, 3>();
|
||||
EXPECT(assert_equal(expectedQr, actualQr, 1e-6));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( Pose3, LogmapDerivative) {
|
||||
Matrix6 actualH;
|
||||
|
|
|
|||
Loading…
Reference in New Issue