Clean up, MPE tests
parent
70089a0fd4
commit
b10ea06626
|
@ -31,8 +31,8 @@ SearchNode SearchNode::expand(const DiscreteConditional& conditional,
|
|||
const DiscreteValues& fa) const {
|
||||
// Combine the new frontal assignment with the current partial assignment
|
||||
DiscreteValues newAssignment = assignment;
|
||||
for (auto& kv : fa) {
|
||||
newAssignment[kv.first] = kv.second;
|
||||
for (auto& [key, value] : fa) {
|
||||
newAssignment[key] = value;
|
||||
}
|
||||
|
||||
return {.assignment = newAssignment,
|
||||
|
@ -50,11 +50,10 @@ bool Solutions::maybeAdd(double error, const DiscreteValues& assignment) {
|
|||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const Solutions& sn) {
|
||||
os << "Solutions (top " << sn.pq_.size() << "):\n";
|
||||
auto pq = sn.pq_;
|
||||
while (!pq.empty()) {
|
||||
const Solution& best = pq.top();
|
||||
os << "Error: " << best.error << ", Values: " << best.assignment
|
||||
<< std::endl;
|
||||
os << pq.top() << "\n";
|
||||
pq.pop();
|
||||
}
|
||||
return os;
|
||||
|
@ -62,8 +61,7 @@ std::ostream& operator<<(std::ostream& os, const Solutions& sn) {
|
|||
|
||||
bool Solutions::prune(double bound) const {
|
||||
if (pq_.size() < maxSize_) return false;
|
||||
double worstError = pq_.top().error;
|
||||
return (bound >= worstError);
|
||||
return bound >= pq_.top().error;
|
||||
}
|
||||
|
||||
std::vector<Solution> Solutions::extractSolutions() {
|
||||
|
@ -80,45 +78,23 @@ std::vector<Solution> Solutions::extractSolutions() {
|
|||
|
||||
DiscreteSearch::DiscreteSearch(const DiscreteBayesNet& bayesNet, size_t K)
|
||||
: solutions_(K) {
|
||||
// Copy out the conditionals
|
||||
for (auto& factor : bayesNet) {
|
||||
conditionals_.push_back(factor);
|
||||
}
|
||||
|
||||
// Calculate the cost-to-go for each conditional
|
||||
costToGo_ = computeCostToGo(conditionals_);
|
||||
|
||||
// Create the root node and push it to the expansions queue
|
||||
expansions_.push(SearchNode::Root(
|
||||
conditionals_.size(), costToGo_.empty() ? 0.0 : costToGo_.back()));
|
||||
std::vector<DiscreteConditional::shared_ptr> conditionals;
|
||||
for (auto& factor : bayesNet) conditionals.push_back(factor);
|
||||
initialize(conditionals);
|
||||
}
|
||||
|
||||
DiscreteSearch::DiscreteSearch(const DiscreteBayesTree& bayesTree, size_t K)
|
||||
: solutions_(K) {
|
||||
using CliquePtr = DiscreteBayesTree::sharedClique;
|
||||
std::function<void(const CliquePtr&)> collectConditionals =
|
||||
[&](const CliquePtr& clique) -> void {
|
||||
std::vector<DiscreteConditional::shared_ptr> conditionals;
|
||||
std::function<void(const DiscreteBayesTree::sharedClique&)>
|
||||
collectConditionals = [&](const auto& clique) {
|
||||
if (!clique) return;
|
||||
|
||||
// Recursive post-order traversal: process children first
|
||||
for (const auto& child : clique->children) {
|
||||
collectConditionals(child);
|
||||
}
|
||||
|
||||
// Then add the current clique's conditional
|
||||
conditionals_.push_back(clique->conditional());
|
||||
for (const auto& child : clique->children) collectConditionals(child);
|
||||
conditionals.push_back(clique->conditional());
|
||||
};
|
||||
|
||||
// Start traversal from each root in the tree
|
||||
for (const auto& root : bayesTree.roots()) collectConditionals(root);
|
||||
|
||||
// Calculate the cost-to-go for each conditional
|
||||
costToGo_ = computeCostToGo(conditionals_);
|
||||
|
||||
// Create the root node and push it to the expansions queue
|
||||
expansions_.push(SearchNode::Root(
|
||||
conditionals_.size(), costToGo_.empty() ? 0.0 : costToGo_.back()));
|
||||
}
|
||||
initialize(conditionals);
|
||||
};
|
||||
|
||||
std::vector<Solution> DiscreteSearch::run() {
|
||||
while (!expansions_.empty()) {
|
||||
|
@ -170,7 +146,7 @@ void DiscreteSearch::expandNextNode() {
|
|||
|
||||
// Again, prune if we cannot beat the worst solution
|
||||
if (!solutions_.prune(childNode.bound)) {
|
||||
expansions_.push(childNode);
|
||||
expansions_.emplace(childNode);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -19,6 +19,8 @@
|
|||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteBayesTree.h>
|
||||
|
||||
#include <queue>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using Value = size_t;
|
||||
|
@ -52,7 +54,7 @@ struct SearchNode {
|
|||
*
|
||||
* @return True if all variables have been assigned, false otherwise.
|
||||
*/
|
||||
bool isComplete() const { return nextConditional < 0; }
|
||||
inline bool isComplete() const { return nextConditional < 0; }
|
||||
|
||||
/**
|
||||
* @brief Expands the node by assigning the next variable.
|
||||
|
@ -133,12 +135,12 @@ class DiscreteSearch {
|
|||
/**
|
||||
* Construct from a DiscreteBayesNet and K.
|
||||
*/
|
||||
DiscreteSearch(const DiscreteBayesNet& bayesNet, size_t K);
|
||||
DiscreteSearch(const DiscreteBayesNet& bayesNet, size_t K = 1);
|
||||
|
||||
/**
|
||||
* Construct from a DiscreteBayesTree and K.
|
||||
*/
|
||||
DiscreteSearch(const DiscreteBayesTree& bayesTree, size_t K);
|
||||
DiscreteSearch(const DiscreteBayesTree& bayesTree, size_t K = 1);
|
||||
|
||||
/**
|
||||
* @brief Search for the K best solutions.
|
||||
|
@ -153,18 +155,20 @@ class DiscreteSearch {
|
|||
std::vector<Solution> run();
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Compute the cost-to-go for each conditional.
|
||||
*
|
||||
* @param conditionals The conditionals of the DiscreteBayesNet.
|
||||
* @return A vector of cost-to-go values.
|
||||
*/
|
||||
/// Initialize the search with the given conditionals.
|
||||
void initialize(
|
||||
const std::vector<DiscreteConditional::shared_ptr>& conditionals) {
|
||||
conditionals_ = conditionals;
|
||||
costToGo_ = computeCostToGo(conditionals_);
|
||||
expansions_.push(SearchNode::Root(
|
||||
conditionals_.size(), costToGo_.empty() ? 0.0 : costToGo_.back()));
|
||||
}
|
||||
|
||||
/// Compute the cumulative cost-to-go for each conditional slot.
|
||||
static std::vector<double> computeCostToGo(
|
||||
const std::vector<DiscreteConditional::shared_ptr>& conditionals);
|
||||
|
||||
/**
|
||||
* @brief Expand the next node in the search tree.
|
||||
*/
|
||||
/// Expand the next node in the search tree.
|
||||
void expandNextNode();
|
||||
|
||||
std::vector<DiscreteConditional::shared_ptr> conditionals_;
|
||||
|
|
|
@ -46,20 +46,32 @@ TEST(DiscreteBayesNet, EmptyKBest) {
|
|||
TEST(DiscreteBayesNet, AsiaKBest) {
|
||||
using namespace asia_example;
|
||||
DiscreteBayesNet asia = createAsiaExample();
|
||||
|
||||
// Ask for the MPE
|
||||
DiscreteSearch search1(asia);
|
||||
auto mpe = search1.run();
|
||||
|
||||
// print numExpansions
|
||||
std::cout << "Number of expansions: " << search1.numExpansions << std::endl;
|
||||
|
||||
EXPECT_LONGS_EQUAL(1, mpe.size());
|
||||
// Regression test: check the MPE solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(mpe[0].error), 1e-5);
|
||||
|
||||
DiscreteSearch search(asia, 4);
|
||||
auto solutions = search.run();
|
||||
|
||||
// print numExpansions
|
||||
std::cout << "Number of expansions: " << search.numExpansions << std::endl;
|
||||
|
||||
EXPECT(!solutions.empty());
|
||||
EXPECT_LONGS_EQUAL(4, solutions.size());
|
||||
// Regression test: check the first and last solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(solutions[0].error), 1e-5);
|
||||
EXPECT_DOUBLES_EQUAL(2.201708, std::fabs(solutions[3].error), 1e-5);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DiscreteBayesTree, testEmptyTree) {
|
||||
TEST(DiscreteBayesTree, EmptyTree) {
|
||||
DiscreteBayesTree bt;
|
||||
|
||||
DiscreteSearch search(bt, 3);
|
||||
|
@ -72,12 +84,23 @@ TEST(DiscreteBayesTree, testEmptyTree) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DiscreteBayesTree, testTrivialOneClique) {
|
||||
TEST(DiscreteBayesTree, AsiaTreeKBest) {
|
||||
using namespace asia_example;
|
||||
DiscreteFactorGraph asia(createAsiaExample());
|
||||
const Ordering ordering{D, X, B, E, L, T, S, A};
|
||||
DiscreteBayesTree::shared_ptr bt = asia.eliminateMultifrontal(ordering);
|
||||
|
||||
// Ask for top 4 solutions
|
||||
DiscreteSearch search1(*bt);
|
||||
auto mpe = search1.run();
|
||||
|
||||
// print numExpansions
|
||||
std::cout << "Number of expansions: " << search1.numExpansions << std::endl;
|
||||
|
||||
EXPECT_LONGS_EQUAL(1, mpe.size());
|
||||
// Regression test: check the MPE solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(mpe[0].error), 1e-5);
|
||||
|
||||
// Ask for top 4 solutions
|
||||
DiscreteSearch search(*bt, 4);
|
||||
auto solutions = search.run();
|
||||
|
@ -85,7 +108,7 @@ TEST(DiscreteBayesTree, testTrivialOneClique) {
|
|||
// print numExpansions
|
||||
std::cout << "Number of expansions: " << search.numExpansions << std::endl;
|
||||
|
||||
EXPECT(!solutions.empty());
|
||||
EXPECT_LONGS_EQUAL(4, solutions.size());
|
||||
// Regression test: check the first and last solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(solutions[0].error), 1e-5);
|
||||
EXPECT_DOUBLES_EQUAL(2.201708, std::fabs(solutions[3].error), 1e-5);
|
||||
|
|
Loading…
Reference in New Issue