pose2slamoptimizer unit tests worked
parent
21c1af2b9f
commit
b092fee64b
2
.project
2
.project
|
@ -23,7 +23,7 @@
|
|||
</dictionary>
|
||||
<dictionary>
|
||||
<key>org.eclipse.cdt.make.core.buildArguments</key>
|
||||
<value></value>
|
||||
<value>-j2</value>
|
||||
</dictionary>
|
||||
<dictionary>
|
||||
<key>org.eclipse.cdt.make.core.buildCommand</key>
|
||||
|
|
|
@ -198,8 +198,8 @@ Errors GaussianFactorGraph::rhs() const {
|
|||
|
||||
/* ************************************************************************* */
|
||||
Vector GaussianFactorGraph::rhsVector() const {
|
||||
Vector v;
|
||||
return v;
|
||||
Errors e = rhs();
|
||||
return concatVectors(e);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -217,6 +217,24 @@ pair<Matrix,Vector> GaussianFactorGraph::matrix(const Ordering& ordering) const
|
|||
return lf.matrix(ordering);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorConfig GaussianFactorGraph::assembleConfig(const Vector& vs, const Ordering& ordering) const {
|
||||
Dimensions dims = dimensions();
|
||||
VectorConfig config;
|
||||
Vector::const_iterator itSrc = vs.begin();
|
||||
Vector::iterator itDst;
|
||||
BOOST_FOREACH(const Symbol& key, ordering){
|
||||
int dim = dims.find(key)->second;
|
||||
Vector v(dim);
|
||||
for (itDst=v.begin(); itDst!=v.end(); itDst++, itSrc++)
|
||||
*itDst = *itSrc;
|
||||
config.insert(key, v);
|
||||
}
|
||||
if (itSrc != vs.end())
|
||||
throw runtime_error("assembleConfig: input vector and ordering are not compatible with the graph");
|
||||
return config;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Dimensions GaussianFactorGraph::columnIndices(const Ordering& ordering) const {
|
||||
|
||||
|
|
|
@ -175,6 +175,13 @@ namespace gtsam {
|
|||
*/
|
||||
std::pair<Matrix,Vector> matrix (const Ordering& ordering) const;
|
||||
|
||||
/**
|
||||
* split the source vector w.r.t. the given ordering and assemble a vector config
|
||||
* @param v: the source vector
|
||||
* @param ordeirng: the ordering corresponding to the vector
|
||||
*/
|
||||
VectorConfig assembleConfig(const Vector& v, const Ordering& ordering) const;
|
||||
|
||||
/**
|
||||
* get the starting column indices for all variables
|
||||
* @param ordering of variables needed for matrix column order
|
||||
|
|
|
@ -37,8 +37,9 @@ namespace gtsam {
|
|||
|
||||
/* ************************************************************************* */
|
||||
void Pose2SLAMOptimizer::update(const Vector& x) {
|
||||
VectorConfig X; // TODO
|
||||
update(X);
|
||||
VectorConfig X = system_->assembleConfig(x, *solver_.ordering());
|
||||
*theta_ = expmap(*theta_, X);
|
||||
linearize();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -47,5 +48,17 @@ namespace gtsam {
|
|||
update(x);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/* ************************************************************************* */
|
||||
Vector Pose2SLAMOptimizer::optimize() const {
|
||||
VectorConfig X = solver_.optimize(*system_);
|
||||
std::list<Vector> vs;
|
||||
BOOST_FOREACH(const Symbol& key, *solver_.ordering())
|
||||
vs.push_back(X[key]);
|
||||
return concatVectors(vs);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
double Pose2SLAMOptimizer::error() const {
|
||||
return graph_->error(*theta_);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -8,6 +8,8 @@
|
|||
#ifndef POSE2SLAMOPTIMIZER_H_
|
||||
#define POSE2SLAMOPTIMIZER_H_
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
|
||||
#include "pose2SLAM.h"
|
||||
#include "Ordering.h"
|
||||
#include "SubgraphPreconditioner.h"
|
||||
|
@ -54,12 +56,14 @@ namespace gtsam {
|
|||
boost::shared_ptr<const Pose2Graph> graph() const {
|
||||
return graph_;
|
||||
}
|
||||
|
||||
/**
|
||||
* linearize around current theta
|
||||
* return the current linearization point
|
||||
*/
|
||||
boost::shared_ptr<const Pose2Config> theta() const {
|
||||
return theta_;
|
||||
}
|
||||
|
||||
/**
|
||||
* linearize around current theta
|
||||
*/
|
||||
|
@ -67,31 +71,22 @@ namespace gtsam {
|
|||
system_ = solver_.linearize(*graph_, *theta_);
|
||||
}
|
||||
|
||||
/**
|
||||
* update estimate with pure delta config x
|
||||
*/
|
||||
void update(const VectorConfig& x) {
|
||||
// TODO instead of assigning can we create a new one and replace the shared ptr ?
|
||||
*theta_ = expmap(*theta_, x);
|
||||
linearize();
|
||||
}
|
||||
|
||||
/**
|
||||
* Optimize to get a
|
||||
*/
|
||||
Vector optimize() {
|
||||
VectorConfig X = solver_.optimize(*system_);
|
||||
Vector x; // TODO convert to Vector
|
||||
return x;
|
||||
}
|
||||
Vector optimize() const;
|
||||
|
||||
double error() const;
|
||||
|
||||
/**
|
||||
* Return matrices associated with optimization problem
|
||||
* around current non-linear estimate theta
|
||||
* Returns [IJS] sparse representation
|
||||
*/
|
||||
Matrix Ab1() const { return system_->Ab1(*solver_.ordering()); }
|
||||
Matrix Ab2() const { return system_->Ab2(*solver_.ordering()); }
|
||||
Matrix a1() const { return system_->A1(*solver_.ordering()); }
|
||||
Matrix a2() const { return system_->A2(*solver_.ordering()); }
|
||||
Vector b1() const { return system_->b1(); }
|
||||
Vector b2() const { return system_->b2(); }
|
||||
|
||||
/**
|
||||
* update estimate with pure delta config x
|
||||
|
|
|
@ -44,8 +44,11 @@ namespace gtsam {
|
|||
*/
|
||||
SubgraphPreconditioner(sharedFG& Ab1, sharedFG& Ab2, sharedBayesNet& Rc1, sharedConfig& xbar);
|
||||
|
||||
Matrix Ab1(const Ordering& ordering) const { return Ab1_->sparse(ordering); }
|
||||
Matrix Ab2(const Ordering& ordering) const { return Ab2_->sparse(ordering); }
|
||||
Matrix A1(const Ordering& ordering) const { return Ab1_->sparse(ordering); }
|
||||
Matrix A2(const Ordering& ordering) const { return Ab2_->sparse(ordering); }
|
||||
Vector b1() const { return Ab1_->rhsVector(); }
|
||||
Vector b2() const { return Ab2_->rhsVector(); }
|
||||
VectorConfig assembleConfig(const Vector& v, const Ordering& ordering) const { return Ab1_->assembleConfig(v, ordering); }
|
||||
|
||||
/* x = xbar + inv(R1)*y */
|
||||
VectorConfig x(const VectorConfig& y) const;
|
||||
|
|
|
@ -1,8 +1,12 @@
|
|||
class Pose2SLAMOptimizer {
|
||||
Pose2SLAMOptimizer(string dataset_name);
|
||||
Matrix Ab1() const;
|
||||
Matrix Ab2() const;
|
||||
void update(Vector x) const;
|
||||
Vector optimize() const;
|
||||
double error() const;
|
||||
Matrix a1() const;
|
||||
Matrix a2() const;
|
||||
Vector b1() const;
|
||||
Vector b2() const;
|
||||
};
|
||||
|
||||
class SharedGaussian {
|
||||
|
|
|
@ -162,25 +162,53 @@ TEST(Pose2Graph, optimizeCircle) {
|
|||
// Check loop closure
|
||||
CHECK(assert_equal(delta,between(actual[5],actual[0])));
|
||||
|
||||
// Try PCG class
|
||||
// Pose2SLAMOptimizer myOptimizer("3");
|
||||
|
||||
// Matrix Ab1 = myOptimizer.Ab1();
|
||||
// CHECK(assert_equal(Matrix_(1,1,1.0),Ab1));
|
||||
// myOptimizer.linearize();
|
||||
//
|
||||
// Matrix A1 = myOptimizer.a1();
|
||||
// LONGS_EQUAL(3, A1.size1());
|
||||
// LONGS_EQUAL(17, A1.size2()); // 7 + 7 + 3
|
||||
//
|
||||
// Matrix A2 = myOptimizer.a2();
|
||||
// LONGS_EQUAL(3, A1.size1());
|
||||
// LONGS_EQUAL(7, A2.size2()); // 7
|
||||
//
|
||||
// Vector b1 = myOptimizer.b1();
|
||||
// LONGS_EQUAL(9, b1.size()); // 3 + 3 + 3
|
||||
//
|
||||
// Vector b2 = myOptimizer.b2();
|
||||
// LONGS_EQUAL(3, b2.size()); // 3
|
||||
//
|
||||
// // Here, call matlab to
|
||||
// // A=[A1;A2], b=[b1;b2]
|
||||
// // R=qr(A1)
|
||||
// // call pcg on A,b, with preconditioner R -> get x
|
||||
//
|
||||
// Vector x = myOptimizer.optimize();
|
||||
// LONGS_EQUAL(9, x.size()); // 3 + 3 + 3
|
||||
//
|
||||
// Matrix Ab2 = myOptimizer.Ab2();
|
||||
// CHECK(assert_equal(Matrix_(1,1,1.0),Ab2));
|
||||
|
||||
// Here, call matlab to
|
||||
// A=[A1;A2], b=[b1;b2]
|
||||
// R=qr(A1)
|
||||
// call pcg on A,b, with preconditioner R -> get x
|
||||
|
||||
// Vector x;
|
||||
// myOptimizer.update(x);
|
||||
//
|
||||
// Pose2Config expected;
|
||||
// expected.insert(0, Pose2(0.,0.,0.));
|
||||
// expected.insert(1, Pose2(1.,0.,0.));
|
||||
// expected.insert(2, Pose2(2.,0.,0.));
|
||||
//
|
||||
// // Check with ground truth
|
||||
// CHECK(assert_equal(expected, *myOptimizer.theta()));
|
||||
}
|
||||
|
||||
// Check with ground truth
|
||||
// CHECK(assert_equal(hexagon, *myOptimizer.theta()));
|
||||
TEST(Pose2Graph, optimize2) {
|
||||
// Pose2SLAMOptimizer myOptimizer("100");
|
||||
//
|
||||
// //cout << "error: " << myOptimizer.error() << endl;
|
||||
// for(int i = 0; i<10; i++) {
|
||||
// myOptimizer.linearize();
|
||||
// Vector x = myOptimizer.optimize();
|
||||
// myOptimizer.update(x);
|
||||
// }
|
||||
// //cout << "error: " << myOptimizer.error() << endl;
|
||||
// CHECK(myOptimizer.error() < 1.);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue