Merge remote-tracking branch 'origin/develop' into feature/ExpressionsBALExample

release/4.3a0
dellaert 2015-02-11 16:41:09 +01:00
commit b06c353073
6 changed files with 334 additions and 39 deletions

View File

@ -0,0 +1,226 @@
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 6004, 217]
NotebookOptionsPosition[ 5104, 179]
NotebookOutlinePosition[ 5456, 195]
CellTagsIndexPosition[ 5413, 192]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["\<\
In Quaternion.h we have Logmap, but we have to be careful when qw approaches \
-1 (from above) or 1 (from below). The Taylor expansions below are the basis \
for the code.\
\>", "Text",
CellChangeTimes->{{3.632651837171029*^9, 3.6326518973274307`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"angle", "=",
RowBox[{"2",
RowBox[{"ArcCos", "[", "qw", "]"}]}]}]], "Input",
CellChangeTimes->{{3.6326509558588057`*^9, 3.632650976842943*^9}}],
Cell[BoxData[
RowBox[{"2", " ",
RowBox[{"ArcCos", "[", "qw", "]"}]}]], "Output",
CellChangeTimes->{{3.6326509669341784`*^9, 3.6326509795921097`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"s", "=",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{"qw", "*", "qw"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.632650983796185*^9, 3.632650994132272*^9}}],
Cell[BoxData[
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["qw", "2"]}]]], "Output",
CellChangeTimes->{3.63265099440246*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"factor", " ", "=", " ",
RowBox[{"angle", "/", "s"}]}]], "Input",
CellChangeTimes->{{3.632650999925654*^9, 3.632651001339293*^9}, {
3.632651070297429*^9, 3.632651071527272*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"2", " ",
RowBox[{"ArcCos", "[", "qw", "]"}]}],
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["qw", "2"]}]]]], "Output",
CellChangeTimes->{3.632651001671771*^9, 3.632651072007021*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Expand", "[",
RowBox[{"Series", "[",
RowBox[{
FractionBox[
RowBox[{"2", " ",
RowBox[{"ArcCos", "[", "qw", "]"}]}],
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["qw", "2"]}]]], ",",
RowBox[{"{",
RowBox[{"qw", ",", "1", ",", "1"}], "}"}], ",",
RowBox[{"Assumptions", "->",
RowBox[{"(",
RowBox[{"qw", "<", "1"}], ")"}]}]}], "]"}], "]"}]], "Input",
CellChangeTimes->{{3.6326510739355927`*^9, 3.632651117949705*^9}, {
3.6326511716876993`*^9, 3.632651189491748*^9}, {3.632651248821335*^9,
3.632651267905816*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{"2", "-",
FractionBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"qw", "-", "1"}], ")"}]}], "3"], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[",
RowBox[{"qw", "-", "1"}], "]"}],
RowBox[{"3", "/", "2"}]],
SeriesData[$CellContext`qw, 1, {}, 0, 3, 2],
Editable->False]}],
SeriesData[$CellContext`qw, 1, {2, 0,
Rational[-2, 3]}, 0, 3, 2],
Editable->False]], "Output",
CellChangeTimes->{{3.632651102947558*^9, 3.632651118218814*^9}, {
3.632651179610784*^9, 3.6326511898522263`*^9}, {3.632651249719887*^9,
3.632651268312502*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ArcCos", "[",
RowBox[{"-", "1"}], "]"}]], "Input",
CellChangeTimes->{{3.632651352754121*^9, 3.63265135286866*^9}}],
Cell[BoxData["\[Pi]"], "Output",
CellChangeTimes->{3.632651353300222*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Expand", "[",
RowBox[{"Series", "[",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"-", "2"}],
RowBox[{"ArcCos", "[",
RowBox[{"-", "qw"}], "]"}]}],
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["qw", "2"]}]]], ",",
RowBox[{"{",
RowBox[{"qw", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"Assumptions", "->",
RowBox[{"(",
RowBox[{"qw", ">",
RowBox[{"-", "1"}]}], ")"}]}]}], "]"}], "]"}]], "Input",
CellChangeTimes->{{3.6326510739355927`*^9, 3.632651117949705*^9}, {
3.6326511716876993`*^9, 3.6326512088422937`*^9}, {3.632651301817163*^9,
3.6326513406015453`*^9}, {3.63265150259446*^9, 3.632651505055284*^9}, {
3.632651744223112*^9, 3.632651772717318*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{"-", "2"}], "-",
FractionBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"qw", "+", "1"}], ")"}]}], "3"], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[",
RowBox[{"qw", "+", "1"}], "]"}],
RowBox[{"3", "/", "2"}]],
SeriesData[$CellContext`qw, -1, {}, 0, 3, 2],
Editable->False]}],
SeriesData[$CellContext`qw, -1, {-2, 0,
Rational[-2, 3]}, 0, 3, 2],
Editable->False]], "Output",
CellChangeTimes->{
3.632651209181905*^9, 3.6326513025091133`*^9, {3.632651332608609*^9,
3.632651341031022*^9}, 3.632651506516138*^9, {3.632651746679185*^9,
3.632651773032124*^9}}]
}, Open ]]
},
WindowSize->{808, 751},
WindowMargins->{{4, Automatic}, {Automatic, 4}},
FrontEndVersion->"10.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (June 27, \
2014)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 263, 5, 49, "Text"],
Cell[CellGroupData[{
Cell[846, 29, 174, 4, 28, "Input"],
Cell[1023, 35, 154, 3, 28, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[1214, 43, 197, 5, 28, "Input"],
Cell[1414, 50, 129, 4, 40, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[1580, 59, 206, 4, 28, "Input"],
Cell[1789, 65, 233, 7, 59, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[2059, 77, 605, 17, 61, "Input"],
Cell[2667, 96, 645, 19, 48, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[3349, 120, 142, 3, 28, "Input"],
Cell[3494, 125, 74, 1, 28, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[3605, 131, 788, 22, 61, "Input"],
Cell[4396, 155, 692, 21, 48, "Output"]
}, Open ]]
}
]
*)
(* End of internal cache information *)

View File

@ -96,14 +96,15 @@ struct traits<QUATERNION_TYPE> {
Vector3 omega; Vector3 omega;
const double qw = q.w(); const double qw = q.w();
// See Quaternion-Logmap.nb in doc for Taylor expansions
if (qw > NearlyOne) { if (qw > NearlyOne) {
// Taylor expansion of (angle / s) at 1 // Taylor expansion of (angle / s) at 1
//return (2 + 2 * (1-qw) / 3) * q.vec(); // (2 + 2 * (1-qw) / 3) * q.vec();
omega = (8. / 3. - 2. / 3. * qw) * q.vec(); omega = ( 8. / 3. - 2. / 3. * qw) * q.vec();
} else if (qw < NearlyNegativeOne) { } else if (qw < NearlyNegativeOne) {
// Taylor expansion of (angle / s) at -1 // Taylor expansion of (angle / s) at -1
//return (-2 - 2 * (1 + qw) / 3) * q.vec(); // (-2 - 2 * (1 + qw) / 3) * q.vec();
omega = (-8. / 3 + 2. / 3 * qw) * q.vec(); omega = (-8. / 3. - 2. / 3. * qw) * q.vec();
} else { } else {
// Normal, away from zero case // Normal, away from zero case
double angle = 2 * acos(qw), s = sqrt(1 - qw * qw); double angle = 2 * acos(qw), s = sqrt(1 - qw * qw);

View File

@ -758,7 +758,6 @@ TEST(Pose3 , Invariants) {
check_manifold_invariants(id,T3); check_manifold_invariants(id,T3);
check_manifold_invariants(T2,id); check_manifold_invariants(T2,id);
check_manifold_invariants(T2,T3); check_manifold_invariants(T2,T3);
} }
//****************************************************************************** //******************************************************************************
@ -769,7 +768,6 @@ TEST(Pose3 , LieGroupDerivatives) {
CHECK_LIE_GROUP_DERIVATIVES(id,T2); CHECK_LIE_GROUP_DERIVATIVES(id,T2);
CHECK_LIE_GROUP_DERIVATIVES(T2,id); CHECK_LIE_GROUP_DERIVATIVES(T2,id);
CHECK_LIE_GROUP_DERIVATIVES(T2,T3); CHECK_LIE_GROUP_DERIVATIVES(T2,T3);
} }
//****************************************************************************** //******************************************************************************
@ -777,14 +775,15 @@ TEST(Pose3 , ChartDerivatives) {
Pose3 id; Pose3 id;
if (ROT3_DEFAULT_COORDINATES_MODE == Rot3::EXPMAP) { if (ROT3_DEFAULT_COORDINATES_MODE == Rot3::EXPMAP) {
CHECK_CHART_DERIVATIVES(id,id); CHECK_CHART_DERIVATIVES(id,id);
CHECK_CHART_DERIVATIVES(id,T2); // CHECK_CHART_DERIVATIVES(id,T2);
CHECK_CHART_DERIVATIVES(T2,id); // CHECK_CHART_DERIVATIVES(T2,id);
CHECK_CHART_DERIVATIVES(T2,T3); // CHECK_CHART_DERIVATIVES(T2,T3);
} }
} }
/* ************************************************************************* */ /* ************************************************************************* */
int main(){ //TestResult tr; return TestRegistry::runAllTests(tr);} int main() {
std::cout<<"testPose3 currently disabled!!" << std::endl; TestResult tr;
return TestRegistry::runAllTests(tr);
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -39,6 +39,14 @@ TEST(Quaternion , Constructor) {
Q q(Eigen::AngleAxisd(1, Vector3(0, 0, 1))); Q q(Eigen::AngleAxisd(1, Vector3(0, 0, 1)));
} }
//******************************************************************************
TEST(Quaternion , Logmap) {
Q q1(5e-06, 0, 0, 1), q2(-5e-06, 0, 0, -1);
Vector3 v1 = traits<Q>::Logmap(q1);
Vector3 v2 = traits<Q>::Logmap(q2);
EXPECT(assert_equal(v1, v2));
}
//****************************************************************************** //******************************************************************************
TEST(Quaternion , Local) { TEST(Quaternion , Local) {
Vector3 z_axis(0, 0, 1); Vector3 z_axis(0, 0, 1);
@ -47,7 +55,7 @@ TEST(Quaternion , Local) {
QuaternionJacobian H1, H2; QuaternionJacobian H1, H2;
Vector3 expected(0, 0, 0.1); Vector3 expected(0, 0, 0.1);
Vector3 actual = traits<Q>::Local(q1, q2, H1, H2); Vector3 actual = traits<Q>::Local(q1, q2, H1, H2);
EXPECT(assert_equal((Vector)expected,actual)); EXPECT(assert_equal((Vector )expected, actual));
} }
//****************************************************************************** //******************************************************************************
@ -69,7 +77,7 @@ TEST(Quaternion , Compose) {
Q expected = q1 * q2; Q expected = q1 * q2;
Q actual = traits<Q>::Compose(q1, q2); Q actual = traits<Q>::Compose(q1, q2);
EXPECT(traits<Q>::Equals(expected,actual)); EXPECT(traits<Q>::Equals(expected, actual));
} }
//****************************************************************************** //******************************************************************************
@ -85,7 +93,7 @@ TEST(Quaternion , Between) {
Q expected = q1.inverse() * q2; Q expected = q1.inverse() * q2;
Q actual = traits<Q>::Between(q1, q2); Q actual = traits<Q>::Between(q1, q2);
EXPECT(traits<Q>::Equals(expected,actual)); EXPECT(traits<Q>::Equals(expected, actual));
} }
//****************************************************************************** //******************************************************************************
@ -94,36 +102,36 @@ TEST(Quaternion , Inverse) {
Q expected(Eigen::AngleAxisd(-0.1, z_axis)); Q expected(Eigen::AngleAxisd(-0.1, z_axis));
Q actual = traits<Q>::Inverse(q1); Q actual = traits<Q>::Inverse(q1);
EXPECT(traits<Q>::Equals(expected,actual)); EXPECT(traits<Q>::Equals(expected, actual));
} }
//****************************************************************************** //******************************************************************************
TEST(Quaternion , Invariants) { TEST(Quaternion , Invariants) {
check_group_invariants(id,id); check_group_invariants(id, id);
check_group_invariants(id,R1); check_group_invariants(id, R1);
check_group_invariants(R2,id); check_group_invariants(R2, id);
check_group_invariants(R2,R1); check_group_invariants(R2, R1);
check_manifold_invariants(id,id); check_manifold_invariants(id, id);
check_manifold_invariants(id,R1); check_manifold_invariants(id, R1);
check_manifold_invariants(R2,id); check_manifold_invariants(R2, id);
check_manifold_invariants(R2,R1); check_manifold_invariants(R2, R1);
} }
//****************************************************************************** //******************************************************************************
TEST(Quaternion , LieGroupDerivatives) { TEST(Quaternion , LieGroupDerivatives) {
CHECK_LIE_GROUP_DERIVATIVES(id,id); CHECK_LIE_GROUP_DERIVATIVES(id, id);
CHECK_LIE_GROUP_DERIVATIVES(id,R2); CHECK_LIE_GROUP_DERIVATIVES(id, R2);
CHECK_LIE_GROUP_DERIVATIVES(R2,id); CHECK_LIE_GROUP_DERIVATIVES(R2, id);
CHECK_LIE_GROUP_DERIVATIVES(R2,R1); CHECK_LIE_GROUP_DERIVATIVES(R2, R1);
} }
//****************************************************************************** //******************************************************************************
TEST(Quaternion , ChartDerivatives) { TEST(Quaternion , ChartDerivatives) {
CHECK_CHART_DERIVATIVES(id,id); CHECK_CHART_DERIVATIVES(id, id);
CHECK_CHART_DERIVATIVES(id,R2); CHECK_CHART_DERIVATIVES(id, R2);
CHECK_CHART_DERIVATIVES(R2,id); CHECK_CHART_DERIVATIVES(R2, id);
CHECK_CHART_DERIVATIVES(R2,R1); CHECK_CHART_DERIVATIVES(R2, R1);
} }
//****************************************************************************** //******************************************************************************

View File

@ -697,9 +697,8 @@ TEST(Rot3 , ChartDerivatives) {
/* ************************************************************************* */ /* ************************************************************************* */
int main() { int main() {
// TestResult tr; TestResult tr;
// return TestRegistry::runAllTests(tr); return TestRegistry::runAllTests(tr);
std::cout << "testRot3 currently disabled!!" << std::endl;
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -15,20 +15,82 @@
* @author Alireza Fathi * @author Alireza Fathi
*/ */
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Rot3.h> #include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Quaternion.h>
#include <gtsam/base/Testable.h> #include <gtsam/base/Testable.h>
#include <gtsam/base/numericalDerivative.h> #include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/lieProxies.h>
#include <boost/math/constants/constants.hpp>
#include <CppUnitLite/TestHarness.h> #include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
#ifdef GTSAM_USE_QUATERNIONS #ifdef GTSAM_USE_QUATERNIONS
// No quaternion only tests //******************************************************************************
TEST(Rot3Q , Compare) {
using boost::none;
// We set up expected values with quaternions
typedef Quaternion Q;
typedef traits<Q> TQ;
typedef TQ::ChartJacobian OJ;
// We check Rot3 expressions
typedef Rot3 R;
typedef traits<R> TR;
// Define test values
Q q1(Eigen::AngleAxisd(1, Vector3(0, 0, 1)));
Q q2(Eigen::AngleAxisd(2, Vector3(0, 1, 0)));
R R1(q1), R2(q2);
// Check Compose
Q q3 = TQ::Compose(q1, q2, none, none);
R R3 = TR::Compose(R1, R2, none, none);
EXPECT(assert_equal(R(q3), R3));
// Check Retract
Vector3 v(1e-5, 0, 0);
Q q4 = TQ::Retract(q3, v);
R R4 = TR::Retract(R3, v);
EXPECT(assert_equal(R(q4), R4));
// Check Between
Q q5 = TQ::Between(q3, q4);
R R5 = R3.between(R4);
EXPECT(assert_equal(R(q5), R5));
// Check toQuaternion
EXPECT(assert_equal(q5, R5.toQuaternion()));
// Check Logmap
Vector3 vQ = TQ::Logmap(q5);
Vector3 vR = R::Logmap(R5);
EXPECT(assert_equal(vQ, vR));
// Check Local
vQ = TQ::Local(q3, q4);
vR = TR::Local(R3, R4);
EXPECT(assert_equal(vQ, vR));
// Check Retract/Local of Compose
Vector3 vQ1 = TQ::Local(q3, TQ::Compose(q1, TQ::Retract(q2, v)));
Vector3 vR1 = TR::Local(R3, TR::Compose(R1, TR::Retract(R2, v)));
EXPECT(assert_equal(vQ1, vR1));
Vector3 vQ2 = TQ::Local(q3, TQ::Compose(q1, TQ::Retract(q2, -v)));
Vector3 vR2 = TR::Local(R3, TR::Compose(R1, TR::Retract(R2, -v)));
EXPECT(assert_equal(vQ2, vR2));
EXPECT(assert_equal<Vector3>((vQ1 - vQ2) / 0.2, (vR1 - vR2) / 0.2));
// Check Compose Derivatives
Matrix HQ, HR;
HQ = numericalDerivative42<Q, Q, Q, OJ, OJ>(TQ::Compose, q1, q2, none, none);
HR = numericalDerivative42<R, R, R, OJ, OJ>(TR::Compose, R1, R2, none, none);
EXPECT(assert_equal(HQ, HR));
}
#endif #endif