Added the example graph in powerMethodExample.h

release/4.3a0
jingwuOUO 2020-12-11 01:01:27 -05:00
parent 420272e103
commit afb6ebb933
3 changed files with 73 additions and 42 deletions

View File

@ -0,0 +1,67 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* powerMethodExample.h
*
* @file powerMethodExample.h
* @date Nov 2020
* @author Jing Wu
* @brief Create sparse and dense factor graph for
* PowerMethod/AcceleratedPowerMethod
*/
#include <gtsam/inference/Symbol.h>
#include <iostream>
namespace gtsam {
namespace linear {
namespace test {
namespace example {
/* ************************************************************************* */
inline GaussianFactorGraph createSparseGraph() {
using symbol_shorthand::X;
// Let's make a scalar synchronization graph with 4 nodes
GaussianFactorGraph fg;
auto model = noiseModel::Unit::Create(1);
for (size_t j = 0; j < 3; j++) {
fg.add(X(j), -I_1x1, X(j + 1), I_1x1, Vector1::Zero(), model);
}
fg.add(X(3), -I_1x1, X(0), I_1x1, Vector1::Zero(), model); // extra row
return fg;
}
/* ************************************************************************* */
inline GaussianFactorGraph createDenseGraph() {
using symbol_shorthand::X;
// Let's make a scalar synchronization graph with 10 nodes
GaussianFactorGraph fg;
auto model = noiseModel::Unit::Create(1);
// Iterate over nodes
for (size_t j = 0; j < 10; j++) {
// Each node has an edge with all the others
for (size_t i = 1; i < 10; i++)
fg.add(X(j), -I_1x1, X((j + i) % 10), I_1x1, Vector1::Zero(), model);
}
return fg;
}
/* ************************************************************************* */
} // namespace example
} // namespace test
} // namespace linear
} // namespace gtsam

View File

@ -24,6 +24,7 @@
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/AcceleratedPowerMethod.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/tests/powerMethodExample.h>
#include <Eigen/Core>
#include <Eigen/Dense>
@ -33,7 +34,6 @@
using namespace std;
using namespace gtsam;
using symbol_shorthand::X;
/* ************************************************************************* */
TEST(AcceleratedPowerMethod, acceleratedPowerIteration) {
@ -65,12 +65,7 @@ TEST(AcceleratedPowerMethod, acceleratedPowerIteration) {
/* ************************************************************************* */
TEST(AcceleratedPowerMethod, useFactorGraphSparse) {
// Let's make a scalar synchronization graph with 4 nodes
GaussianFactorGraph fg;
auto model = noiseModel::Unit::Create(1);
for (size_t j = 0; j < 3; j++) {
fg.add(X(j), -I_1x1, X(j + 1), I_1x1, Vector1::Zero(), model);
}
fg.add(X(3), -I_1x1, X(0), I_1x1, Vector1::Zero(), model); // extra row
GaussianFactorGraph fg = gtsam::linear::test::example::createSparseGraph();
// Get eigenvalues and eigenvectors with Eigen
auto L = fg.hessian();
@ -105,20 +100,7 @@ TEST(AcceleratedPowerMethod, useFactorGraphSparse) {
/* ************************************************************************* */
TEST(AcceleratedPowerMethod, useFactorGraphDense) {
// Let's make a scalar synchronization graph with 10 nodes
GaussianFactorGraph fg;
auto model = noiseModel::Unit::Create(1);
// Each node has an edge with all the others
for (size_t j = 0; j < 10; j++) {
fg.add(X(j), -I_1x1, X((j + 1)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 2)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 3)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 4)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 5)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 6)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 7)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 8)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 9)%10 ), I_1x1, Vector1::Zero(), model);
}
GaussianFactorGraph fg = gtsam::linear::test::example::createDenseGraph();
// Get eigenvalues and eigenvectors with Eigen
auto L = fg.hessian();

View File

@ -24,6 +24,7 @@
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/PowerMethod.h>
#include <gtsam/linear/tests/powerMethodExample.h>
#include <Eigen/Core>
#include <Eigen/Dense>
@ -33,7 +34,6 @@
using namespace std;
using namespace gtsam;
using symbol_shorthand::X;
/* ************************************************************************* */
TEST(PowerMethod, powerIteration) {
@ -63,12 +63,7 @@ TEST(PowerMethod, powerIteration) {
/* ************************************************************************* */
TEST(PowerMethod, useFactorGraphSparse) {
// Let's make a scalar synchronization graph with 4 nodes
GaussianFactorGraph fg;
auto model = noiseModel::Unit::Create(1);
for (size_t j = 0; j < 3; j++) {
fg.add(X(j), -I_1x1, X(j + 1), I_1x1, Vector1::Zero(), model);
}
fg.add(X(3), -I_1x1, X(0), I_1x1, Vector1::Zero(), model); // extra row
GaussianFactorGraph fg = gtsam::linear::test::example::createSparseGraph();
// Get eigenvalues and eigenvectors with Eigen
auto L = fg.hessian();
@ -96,20 +91,7 @@ TEST(PowerMethod, useFactorGraphSparse) {
/* ************************************************************************* */
TEST(PowerMethod, useFactorGraphDense) {
// Let's make a scalar synchronization graph with 10 nodes
GaussianFactorGraph fg;
auto model = noiseModel::Unit::Create(1);
// Each node has an edge with all the others
for (size_t j = 0; j < 10; j++) {
fg.add(X(j), -I_1x1, X((j + 1)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 2)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 3)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 4)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 5)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 6)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 7)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 8)%10 ), I_1x1, Vector1::Zero(), model);
fg.add(X(j), -I_1x1, X((j + 9)%10 ), I_1x1, Vector1::Zero(), model);
}
GaussianFactorGraph fg = gtsam::linear::test::example::createDenseGraph();
// Get eigenvalues and eigenvectors with Eigen
auto L = fg.hessian();