Added the example graph in powerMethodExample.h
parent
420272e103
commit
afb6ebb933
|
|
@ -0,0 +1,67 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
* See LICENSE for the license information
|
||||||
|
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* powerMethodExample.h
|
||||||
|
*
|
||||||
|
* @file powerMethodExample.h
|
||||||
|
* @date Nov 2020
|
||||||
|
* @author Jing Wu
|
||||||
|
* @brief Create sparse and dense factor graph for
|
||||||
|
* PowerMethod/AcceleratedPowerMethod
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <gtsam/inference/Symbol.h>
|
||||||
|
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
|
||||||
|
namespace gtsam {
|
||||||
|
namespace linear {
|
||||||
|
namespace test {
|
||||||
|
namespace example {
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
inline GaussianFactorGraph createSparseGraph() {
|
||||||
|
using symbol_shorthand::X;
|
||||||
|
// Let's make a scalar synchronization graph with 4 nodes
|
||||||
|
GaussianFactorGraph fg;
|
||||||
|
auto model = noiseModel::Unit::Create(1);
|
||||||
|
for (size_t j = 0; j < 3; j++) {
|
||||||
|
fg.add(X(j), -I_1x1, X(j + 1), I_1x1, Vector1::Zero(), model);
|
||||||
|
}
|
||||||
|
fg.add(X(3), -I_1x1, X(0), I_1x1, Vector1::Zero(), model); // extra row
|
||||||
|
|
||||||
|
return fg;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
inline GaussianFactorGraph createDenseGraph() {
|
||||||
|
using symbol_shorthand::X;
|
||||||
|
// Let's make a scalar synchronization graph with 10 nodes
|
||||||
|
GaussianFactorGraph fg;
|
||||||
|
auto model = noiseModel::Unit::Create(1);
|
||||||
|
// Iterate over nodes
|
||||||
|
for (size_t j = 0; j < 10; j++) {
|
||||||
|
// Each node has an edge with all the others
|
||||||
|
for (size_t i = 1; i < 10; i++)
|
||||||
|
fg.add(X(j), -I_1x1, X((j + i) % 10), I_1x1, Vector1::Zero(), model);
|
||||||
|
}
|
||||||
|
|
||||||
|
return fg;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
|
||||||
|
} // namespace example
|
||||||
|
} // namespace test
|
||||||
|
} // namespace linear
|
||||||
|
} // namespace gtsam
|
||||||
|
|
@ -24,6 +24,7 @@
|
||||||
#include <gtsam/inference/Symbol.h>
|
#include <gtsam/inference/Symbol.h>
|
||||||
#include <gtsam/linear/AcceleratedPowerMethod.h>
|
#include <gtsam/linear/AcceleratedPowerMethod.h>
|
||||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||||
|
#include <gtsam/linear/tests/powerMethodExample.h>
|
||||||
|
|
||||||
#include <Eigen/Core>
|
#include <Eigen/Core>
|
||||||
#include <Eigen/Dense>
|
#include <Eigen/Dense>
|
||||||
|
|
@ -33,7 +34,6 @@
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
using symbol_shorthand::X;
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(AcceleratedPowerMethod, acceleratedPowerIteration) {
|
TEST(AcceleratedPowerMethod, acceleratedPowerIteration) {
|
||||||
|
|
@ -65,12 +65,7 @@ TEST(AcceleratedPowerMethod, acceleratedPowerIteration) {
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(AcceleratedPowerMethod, useFactorGraphSparse) {
|
TEST(AcceleratedPowerMethod, useFactorGraphSparse) {
|
||||||
// Let's make a scalar synchronization graph with 4 nodes
|
// Let's make a scalar synchronization graph with 4 nodes
|
||||||
GaussianFactorGraph fg;
|
GaussianFactorGraph fg = gtsam::linear::test::example::createSparseGraph();
|
||||||
auto model = noiseModel::Unit::Create(1);
|
|
||||||
for (size_t j = 0; j < 3; j++) {
|
|
||||||
fg.add(X(j), -I_1x1, X(j + 1), I_1x1, Vector1::Zero(), model);
|
|
||||||
}
|
|
||||||
fg.add(X(3), -I_1x1, X(0), I_1x1, Vector1::Zero(), model); // extra row
|
|
||||||
|
|
||||||
// Get eigenvalues and eigenvectors with Eigen
|
// Get eigenvalues and eigenvectors with Eigen
|
||||||
auto L = fg.hessian();
|
auto L = fg.hessian();
|
||||||
|
|
@ -105,20 +100,7 @@ TEST(AcceleratedPowerMethod, useFactorGraphSparse) {
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(AcceleratedPowerMethod, useFactorGraphDense) {
|
TEST(AcceleratedPowerMethod, useFactorGraphDense) {
|
||||||
// Let's make a scalar synchronization graph with 10 nodes
|
// Let's make a scalar synchronization graph with 10 nodes
|
||||||
GaussianFactorGraph fg;
|
GaussianFactorGraph fg = gtsam::linear::test::example::createDenseGraph();
|
||||||
auto model = noiseModel::Unit::Create(1);
|
|
||||||
// Each node has an edge with all the others
|
|
||||||
for (size_t j = 0; j < 10; j++) {
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 1)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 2)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 3)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 4)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 5)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 6)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 7)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 8)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 9)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Get eigenvalues and eigenvectors with Eigen
|
// Get eigenvalues and eigenvectors with Eigen
|
||||||
auto L = fg.hessian();
|
auto L = fg.hessian();
|
||||||
|
|
|
||||||
|
|
@ -24,6 +24,7 @@
|
||||||
#include <gtsam/inference/Symbol.h>
|
#include <gtsam/inference/Symbol.h>
|
||||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||||
#include <gtsam/linear/PowerMethod.h>
|
#include <gtsam/linear/PowerMethod.h>
|
||||||
|
#include <gtsam/linear/tests/powerMethodExample.h>
|
||||||
|
|
||||||
#include <Eigen/Core>
|
#include <Eigen/Core>
|
||||||
#include <Eigen/Dense>
|
#include <Eigen/Dense>
|
||||||
|
|
@ -33,7 +34,6 @@
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
using symbol_shorthand::X;
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(PowerMethod, powerIteration) {
|
TEST(PowerMethod, powerIteration) {
|
||||||
|
|
@ -63,12 +63,7 @@ TEST(PowerMethod, powerIteration) {
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(PowerMethod, useFactorGraphSparse) {
|
TEST(PowerMethod, useFactorGraphSparse) {
|
||||||
// Let's make a scalar synchronization graph with 4 nodes
|
// Let's make a scalar synchronization graph with 4 nodes
|
||||||
GaussianFactorGraph fg;
|
GaussianFactorGraph fg = gtsam::linear::test::example::createSparseGraph();
|
||||||
auto model = noiseModel::Unit::Create(1);
|
|
||||||
for (size_t j = 0; j < 3; j++) {
|
|
||||||
fg.add(X(j), -I_1x1, X(j + 1), I_1x1, Vector1::Zero(), model);
|
|
||||||
}
|
|
||||||
fg.add(X(3), -I_1x1, X(0), I_1x1, Vector1::Zero(), model); // extra row
|
|
||||||
|
|
||||||
// Get eigenvalues and eigenvectors with Eigen
|
// Get eigenvalues and eigenvectors with Eigen
|
||||||
auto L = fg.hessian();
|
auto L = fg.hessian();
|
||||||
|
|
@ -96,20 +91,7 @@ TEST(PowerMethod, useFactorGraphSparse) {
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(PowerMethod, useFactorGraphDense) {
|
TEST(PowerMethod, useFactorGraphDense) {
|
||||||
// Let's make a scalar synchronization graph with 10 nodes
|
// Let's make a scalar synchronization graph with 10 nodes
|
||||||
GaussianFactorGraph fg;
|
GaussianFactorGraph fg = gtsam::linear::test::example::createDenseGraph();
|
||||||
auto model = noiseModel::Unit::Create(1);
|
|
||||||
// Each node has an edge with all the others
|
|
||||||
for (size_t j = 0; j < 10; j++) {
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 1)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 2)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 3)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 4)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 5)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 6)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 7)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 8)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
fg.add(X(j), -I_1x1, X((j + 9)%10 ), I_1x1, Vector1::Zero(), model);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Get eigenvalues and eigenvectors with Eigen
|
// Get eigenvalues and eigenvectors with Eigen
|
||||||
auto L = fg.hessian();
|
auto L = fg.hessian();
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue