Implemented N-way factor base class in NoiseModelFactor, added NonlinearFactor{3-6}, adapted NonlinearFactor1,2,3 and NonlinearConstraint1,2,3 to derive from NoiseModelFactor in a minimal way

release/4.3a0
Richard Roberts 2011-10-03 04:24:24 +00:00
parent 5bd4680100
commit af3c12a7df
8 changed files with 849 additions and 794 deletions

View File

@ -163,6 +163,11 @@ SharedDiagonal Gaussian::Cholesky(Matrix& Ab, size_t nFrontals) const {
return Unit::Create(maxrank);
}
void Gaussian::WhitenSystem(vector<Matrix>& A, Vector& b) const {
BOOST_FOREACH(Matrix& Aj, A) { WhitenInPlace(Aj); }
whitenInPlace(b);
}
void Gaussian::WhitenSystem(Matrix& A, Vector& b) const {
WhitenInPlace(A);
whitenInPlace(b);
@ -460,6 +465,24 @@ Vector Base::sqrtWeight(const Vector &error) const {
/** The following three functions reweight block matrices and a vector
* according to their weight implementation */
/** Reweight n block matrices with one error vector */
void Base::reweight(vector<Matrix> &A, Vector &error) const {
if ( reweight_ == Block ) {
const double w = sqrtWeight(error.norm());
BOOST_FOREACH(Matrix& Aj, A) {
Aj *= w;
}
error *= w;
}
else {
const Vector W = sqrtWeight(error);
BOOST_FOREACH(Matrix& Aj, A) {
vector_scale_inplace(W,Aj);
}
error = emul(W, error);
}
}
/** Reweight one block matrix with one error vector */
void Base::reweight(Matrix &A, Vector &error) const {
if ( reweight_ == Block ) {
@ -592,6 +615,11 @@ bool Robust::equals(const Base& expected, double tol) const {
return noise_->equals(*p->noise_,tol) && robust_->equals(*p->robust_,tol);
}
void Robust::WhitenSystem(vector<Matrix>& A, Vector& b) const {
noise_->WhitenSystem(A,b);
robust_->reweight(A,b);
}
void Robust::WhitenSystem(Matrix& A, Vector& b) const {
noise_->WhitenSystem(A,b);
robust_->reweight(A,b);

View File

@ -77,6 +77,7 @@ namespace gtsam {
virtual double distance(const Vector& v) const = 0;
virtual void WhitenSystem(std::vector<Matrix>& A, Vector& b) const = 0;
virtual void WhitenSystem(Matrix& A, Vector& b) const = 0;
virtual void WhitenSystem(Matrix& A1, Matrix& A2, Vector& b) const = 0;
virtual void WhitenSystem(Matrix& A1, Matrix& A2, Matrix& A3, Vector& b) const = 0;
@ -185,6 +186,7 @@ namespace gtsam {
/**
* Whiten a system, in place as well
*/
virtual void WhitenSystem(std::vector<Matrix>& A, Vector& b) const ;
virtual void WhitenSystem(Matrix& A, Vector& b) const ;
virtual void WhitenSystem(Matrix& A1, Matrix& A2, Vector& b) const ;
virtual void WhitenSystem(Matrix& A1, Matrix& A2, Matrix& A3, Vector& b) const;
@ -554,6 +556,7 @@ namespace gtsam {
Vector sqrtWeight(const Vector &error) const;
/** reweight block matrices and a vector according to their weight implementation */
void reweight(std::vector<Matrix> &A, Vector &error) const;
void reweight(Matrix &A, Vector &error) const;
void reweight(Matrix &A1, Matrix &A2, Vector &error) const;
void reweight(Matrix &A1, Matrix &A2, Matrix &A3, Vector &error) const;
@ -642,8 +645,9 @@ namespace gtsam {
// TODO: these are really robust iterated re-weighting support functions
virtual void WhitenSystem(Matrix& A, Vector& b) const ;
virtual void WhitenSystem(Matrix& A1, Matrix& A2, Vector& b) const ;
virtual void WhitenSystem(std::vector<Matrix>& A, Vector& b) const;
virtual void WhitenSystem(Matrix& A, Vector& b) const;
virtual void WhitenSystem(Matrix& A1, Matrix& A2, Vector& b) const;
virtual void WhitenSystem(Matrix& A1, Matrix& A2, Matrix& A3, Vector& b) const;
static shared_ptr Create(

View File

@ -51,36 +51,41 @@ public:
/** Constructor - sets the cost function and the lagrange multipliers
* @param dim is the dimension of the factor
* @param keys is a boost::tuple containing the keys, e.g. \c make_tuple(key1,key2,key3)
* @param mu is the gain used at error evaluation (forced to be positive)
*/
NonlinearConstraint(size_t dim, double mu = 1000.0):
Base(noiseModel::Constrained::All(dim)), mu_(fabs(mu)) {}
template<class TUPLE>
NonlinearConstraint(const TUPLE& keys, size_t dim, double mu = 1000.0):
Base(noiseModel::Constrained::All(dim), keys), mu_(fabs(mu)) {}
virtual ~NonlinearConstraint() {}
/** returns the gain mu */
double mu() const { return mu_; }
/** Print */
virtual void print(const std::string& s = "") const=0;
virtual void print(const std::string& s = "") const {
std::cout << "NonlinearConstraint " << s << std::endl;
std::cout << " ";
BOOST_FOREACH(const Symbol& key, this->keys()) { std::cout << (std::string)key << " "; }
std::cout << "\n";
std::cout << "mu: " << this->mu_ << std::endl;
}
/** Check if two factors are equal */
virtual bool equals(const NonlinearFactor<VALUES>& f, double tol=1e-9) const {
const This* p = dynamic_cast<const This*> (&f);
if (p == NULL) return false;
return Base::equals(*p, tol) && (mu_ == p->mu_);
return Base::equals(*p, tol) && (fabs(mu_ - p->mu_) <= tol);
}
/** error function - returns the quadratic merit function */
virtual double error(const VALUES& c) const {
const Vector error_vector = unwhitenedError(c);
if (active(c))
return mu_ * error_vector.dot(error_vector);
else return 0.0;
return mu_ * unwhitenedError(c).squaredNorm();
else
return 0.0;
}
/** Raw error vector function g(x) */
virtual Vector unwhitenedError(const VALUES& c) const = 0;
/**
* active set check, defines what type of constraint this is
*
@ -95,7 +100,12 @@ public:
* @param config is the values structure
* @return a combined linear factor containing both the constraint and the constraint factor
*/
virtual boost::shared_ptr<GaussianFactor> linearize(const VALUES& c, const Ordering& ordering) const=0;
virtual boost::shared_ptr<GaussianFactor> linearize(const VALUES& c, const Ordering& ordering) const {
if (!active(c))
return boost::shared_ptr<JacobianFactor>();
else
return Base::linearize(c, ordering);
}
private:
@ -138,60 +148,31 @@ public:
* @param mu is the gain for the factor
*/
NonlinearConstraint1(const KEY& key, size_t dim, double mu = 1000.0)
: Base(dim, mu), key_(key) {
this->keys_.push_back(key);
}
: Base(make_tuple(key), dim, mu), key_(key) { }
virtual ~NonlinearConstraint1() {}
/* print */
void print(const std::string& s = "") const {
std::cout << "NonlinearConstraint1 " << s << std::endl;
std::cout << "key: " << (std::string) key_ << std::endl;
std::cout << "mu: " << this->mu_ << std::endl;
}
/** Calls the 1-key specific version of evaluateError, which is pure virtual
* so must be implemented in the derived class. */
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
if(this->active(x)) {
const X& x1 = x[key_];
if(H) {
return evaluateError(x1, (*H)[0]);
} else {
return evaluateError(x1);
}
} else {
return zero(this->dim());
}
}
/** Check if two factors are equal. Note type is Factor and needs cast. */
virtual bool equals(const NonlinearFactor<VALUES>& f, double tol = 1e-9) const {
const This* p = dynamic_cast<const This*> (&f);
if (p == NULL) return false;
return Base::equals(*p, tol) && (key_ == p->key_);
}
/** error function g(x), switched depending on whether the constraint is active */
inline Vector unwhitenedError(const VALUES& x) const {
if (!active(x)) {
return zero(this->dim());
}
const KEY& j = key_;
const X& xj = x[j];
return evaluateError(xj);
}
/** Linearize from config */
boost::shared_ptr<GaussianFactor> linearize(const VALUES& x, const Ordering& ordering) const {
if (!active(x)) {
boost::shared_ptr<JacobianFactor> factor;
return factor;
}
const X& xj = x[key_];
Matrix A;
Vector b = - evaluateError(xj, A);
Index var = ordering[key_];
SharedDiagonal model = noiseModel::Constrained::All(this->dim());
return GaussianFactor::shared_ptr(new JacobianFactor(var, A, b, model));
}
/** g(x) with optional derivative - does not depend on active */
virtual Vector evaluateError(const X& x, boost::optional<Matrix&> H =
boost::none) const = 0;
/**
* Create a symbolic factor using the given ordering to determine the
* variable indices.
*/
virtual IndexFactor::shared_ptr symbolic(const Ordering& ordering) const {
return IndexFactor::shared_ptr(new IndexFactor(ordering[key_]));
}
/**
* Override this method to finish implementing a unary factor.
* If the optional Matrix reference argument is specified, it should compute
* both the function evaluation and its derivative in X.
*/
virtual Vector evaluateError(const X& x, boost::optional<Matrix&> H =
boost::none) const = 0;
private:
@ -272,73 +253,33 @@ public:
* @param mu is the gain for the factor
*/
NonlinearConstraint2(const KEY1& key1, const KEY2& key2, size_t dim, double mu = 1000.0) :
Base(dim, mu), key1_(key1), key2_(key2) {
this->keys_.push_back(key1);
this->keys_.push_back(key2);
}
Base(make_tuple(key1, key2), dim, mu), key1_(key1), key2_(key2) { }
virtual ~NonlinearConstraint2() {}
/* print */
void print(const std::string& s = "") const {
std::cout << "NonlinearConstraint2 " << s << std::endl;
std::cout << "key1: " << (std::string) key1_ << std::endl;
std::cout << "key2: " << (std::string) key2_ << std::endl;
std::cout << "mu: " << this->mu_ << std::endl;
}
/** Calls the 2-key specific version of evaluateError, which is pure virtual
* so must be implemented in the derived class. */
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
if(this->active(x)) {
const X1& x1 = x[key1_];
const X2& x2 = x[key2_];
if(H) {
return evaluateError(x1, x2, (*H)[0], (*H)[1]);
} else {
return evaluateError(x1, x2);
}
} else {
return zero(this->dim());
}
}
/** Check if two factors are equal. Note type is Factor and needs cast. */
virtual bool equals(const NonlinearFactor<VALUES>& f, double tol = 1e-9) const {
const This* p = dynamic_cast<const This*> (&f);
if (p == NULL) return false;
return Base::equals(*p, tol) && (key1_ == p->key1_) && (key2_ == p->key2_);
}
/** error function g(x), switched depending on whether the constraint is active */
inline Vector unwhitenedError(const VALUES& x) const {
if (!active(x)) {
return zero(this->dim());
}
const KEY1& j1 = key1_;
const KEY2& j2 = key2_;
const X1& xj1 = x[j1];
const X2& xj2 = x[j2];
return evaluateError(xj1, xj2);
}
/** Linearize from config */
boost::shared_ptr<GaussianFactor> linearize(const VALUES& c, const Ordering& ordering) const {
if (!active(c)) {
boost::shared_ptr<JacobianFactor> factor;
return factor;
}
const KEY1& j1 = key1_; const KEY2& j2 = key2_;
const X1& x1 = c[j1]; const X2& x2 = c[j2];
Matrix grad1, grad2;
Vector g = -1.0 * evaluateError(x1, x2, grad1, grad2);
SharedDiagonal model = noiseModel::Constrained::All(this->dim());
Index var1 = ordering[j1], var2 = ordering[j2];
if (var1 < var2)
return GaussianFactor::shared_ptr(new JacobianFactor(var1, grad1, var2, grad2, g, model));
else
return GaussianFactor::shared_ptr(new JacobianFactor(var2, grad2, var1, grad1, g, model));
}
/** g(x) with optional derivative2 - does not depend on active */
virtual Vector evaluateError(const X1& x1, const X2& x2,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const = 0;
/**
* Create a symbolic factor using the given ordering to determine the
* variable indices.
*/
virtual IndexFactor::shared_ptr symbolic(const Ordering& ordering) const {
const Index var1 = ordering[key1_], var2 = ordering[key2_];
if(var1 < var2)
return IndexFactor::shared_ptr(new IndexFactor(var1, var2));
else
return IndexFactor::shared_ptr(new IndexFactor(var2, var1));
}
/**
* Override this method to finish implementing a binary factor.
* If any of the optional Matrix reference arguments are specified, it should compute
* both the function evaluation and its derivative(s) in X1 (and/or X2).
*/
virtual Vector
evaluateError(const X1&, const X2&, boost::optional<Matrix&> H1 =
boost::none, boost::optional<Matrix&> H2 = boost::none) const = 0;
private:
@ -424,102 +365,36 @@ public:
*/
NonlinearConstraint3(const KEY1& key1, const KEY2& key2, const KEY3& key3,
size_t dim, double mu = 1000.0) :
Base(dim, mu), key1_(key1), key2_(key2), key3_(key3) {
this->keys_.push_back(key1);
this->keys_.push_back(key2);
this->keys_.push_back(key3);
}
Base(make_tuple(key1, key2, key3), dim, mu), key1_(key1), key2_(key2), key3_(key3) { }
virtual ~NonlinearConstraint3() {}
/* print */
void print(const std::string& s = "") const {
std::cout << "NonlinearConstraint3 " << s << std::endl;
std::cout << "key1: " << (std::string) key1_ << std::endl;
std::cout << "key2: " << (std::string) key2_ << std::endl;
std::cout << "key3: " << (std::string) key3_ << std::endl;
std::cout << "mu: " << this->mu_ << std::endl;
}
/** Check if two factors are equal. Note type is Factor and needs cast. */
virtual bool equals(const NonlinearFactor<VALUES>& f, double tol = 1e-9) const {
const This* p = dynamic_cast<const This*> (&f);
if (p == NULL) return false;
return Base::equals(*p, tol) && (key1_ == p->key1_) && (key2_ == p->key2_) && (key3_ == p->key3_);
}
/** error function g(x), switched depending on whether the constraint is active */
inline Vector unwhitenedError(const VALUES& x) const {
if (!active(x)) {
return zero(this->dim());
}
const KEY1& j1 = key1_;
const KEY2& j2 = key2_;
const KEY3& j3 = key3_;
const X1& xj1 = x[j1];
const X2& xj2 = x[j2];
const X3& xj3 = x[j3];
return evaluateError(xj1, xj2, xj3);
}
/** Linearize from config */
boost::shared_ptr<GaussianFactor> linearize(const VALUES& c, const Ordering& ordering) const {
if (!active(c)) {
boost::shared_ptr<JacobianFactor> factor;
return factor;
}
const KEY1& j1 = key1_; const KEY2& j2 = key2_; const KEY3& j3 = key3_;
const X1& x1 = c[j1]; const X2& x2 = c[j2]; const X3& x3 = c[j3];
Matrix A1, A2, A3;
Vector b = -1.0 * evaluateError(x1, x2, x3, A1, A2, A3);
SharedDiagonal model = noiseModel::Constrained::All(this->dim());
Index var1 = ordering[j1], var2 = ordering[j2], var3 = ordering[j3];
// perform sorting
if(var1 < var2 && var2 < var3)
return GaussianFactor::shared_ptr(
new JacobianFactor(var1, A1, var2, A2, var3, A3, b, model));
else if(var2 < var1 && var1 < var3)
return GaussianFactor::shared_ptr(
new JacobianFactor(var2, A2, var1, A1, var3, A3, b, model));
else if(var1 < var3 && var3 < var2)
return GaussianFactor::shared_ptr(
new JacobianFactor(var1, A1, var3, A3, var2, A2, b, model));
else if(var2 < var3 && var3 < var1)
return GaussianFactor::shared_ptr(
new JacobianFactor(var2, A2, var3, A3, var1, A1, b, model));
else if(var3 < var1 && var1 < var2)
return GaussianFactor::shared_ptr(
new JacobianFactor(var3, A3, var1, A1, var2, A2, b, model));
else
return GaussianFactor::shared_ptr(
new JacobianFactor(var3, A3, var2, A2, var1, A1, b, model));
}
/** g(x) with optional derivative3 - does not depend on active */
virtual Vector evaluateError(const X1& x1, const X2& x2, const X3& x3,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const = 0;
/**
* Create a symbolic factor using the given ordering to determine the
* variable indices.
*/
virtual IndexFactor::shared_ptr symbolic(const Ordering& ordering) const {
const Index var1 = ordering[key1_], var2 = ordering[key2_], var3 = ordering[key3_];
if(var1 < var2 && var2 < var3)
return IndexFactor::shared_ptr(new IndexFactor(ordering[key1_], ordering[key2_], ordering[key3_]));
else if(var2 < var1 && var1 < var3)
return IndexFactor::shared_ptr(new IndexFactor(ordering[key2_], ordering[key1_], ordering[key3_]));
else if(var1 < var3 && var3 < var2)
return IndexFactor::shared_ptr(new IndexFactor(ordering[key1_], ordering[key3_], ordering[key2_]));
else if(var2 < var3 && var3 < var1)
return IndexFactor::shared_ptr(new IndexFactor(ordering[key2_], ordering[key3_], ordering[key1_]));
else if(var3 < var1 && var1 < var2)
return IndexFactor::shared_ptr(new IndexFactor(ordering[key3_], ordering[key1_], ordering[key2_]));
else
return IndexFactor::shared_ptr(new IndexFactor(ordering[key3_], ordering[key2_], ordering[key1_]));
/** Calls the 2-key specific version of evaluateError, which is pure virtual
* so must be implemented in the derived class. */
virtual Vector unwhitenedError(const VALUES& x, boost::optional<std::vector<Matrix>&> H = boost::none) const {
if(this->active(x)) {
const X1& x1 = x[key1_];
const X2& x2 = x[key2_];
const X3& x3 = x[key3_];
if(H) {
return evaluateError(x1, x2, x3, (*H)[0], (*H)[1], (*H)[2]);
} else {
return evaluateError(x1, x2, x3);
}
} else {
return zero(this->dim());
}
}
/**
* Override this method to finish implementing a trinary factor.
* If any of the optional Matrix reference arguments are specified, it should compute
* both the function evaluation and its derivative(s) in X1 (and/or X2, X3).
*/
virtual Vector
evaluateError(const X1&, const X2&, const X3&,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const = 0;
private:

File diff suppressed because it is too large Load Diff

View File

@ -45,17 +45,6 @@ namespace gtsam {
Base::print(str);
}
/* ************************************************************************* */
template<class VALUES>
Vector NonlinearFactorGraph<VALUES>::unwhitenedError(const VALUES& c) const {
list<Vector> errors;
BOOST_FOREACH(const sharedFactor& factor, this->factors_) {
if(factor)
errors.push_back(factor->unwhitenedError(c));
}
return concatVectors(errors);
}
/* ************************************************************************* */
template<class VALUES>
double NonlinearFactorGraph<VALUES>::error(const VALUES& c) const {

View File

@ -53,9 +53,6 @@ namespace gtsam {
/** unnormalized error */
double error(const VALUES& c) const;
/** all individual errors */
Vector unwhitenedError(const VALUES& c) const;
/** Unnormalized probability. O(n) */
double probPrime(const VALUES& c) const;

View File

@ -160,8 +160,17 @@ TEST( planarSLAM, constructor )
double z2(sqrt(2) - 0.22); // h(x) - z = 0.22
G.addRange(2, 3, z2, sigma);
Vector expected = Vector_(8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.1, 0.22);
EXPECT(assert_equal(expected,G.unwhitenedError(c)));
Vector expected0 = Vector_(3, 0.0, 0.0, 0.0);
Vector expected1 = Vector_(3, 0.0, 0.0, 0.0);
Vector expected2 = Vector_(1, -0.1);
Vector expected3 = Vector_(1, 0.22);
// Get NoiseModelFactors
FactorGraph<NoiseModelFactor<planarSLAM::Values> > GNM =
*G.dynamicCastFactors<FactorGraph<NoiseModelFactor<planarSLAM::Values> > >();
EXPECT(assert_equal(expected0, GNM[0]->unwhitenedError(c)));
EXPECT(assert_equal(expected1, GNM[1]->unwhitenedError(c)));
EXPECT(assert_equal(expected2, GNM[2]->unwhitenedError(c)));
EXPECT(assert_equal(expected3, GNM[3]->unwhitenedError(c)));
}
/* ************************************************************************* */

View File

@ -87,7 +87,7 @@ TEST( NonlinearFactor, NonlinearFactor )
// calculate the error_vector from the factor "f1"
// error_vector = [0.1 0.1]
Vector actual_e = factor->unwhitenedError(cfg);
Vector actual_e = boost::dynamic_pointer_cast<NoiseModelFactor<Values> >(factor)->unwhitenedError(cfg);
CHECK(assert_equal(0.1*ones(2),actual_e));
// error = 0.5 * [1 1] * [1;1] = 1