Merge pull request #1031 from borglab/add-python-unit-test-robust-noise

Add python unit test for triangulation with robust noise model
release/4.3a0
John Lambert 2022-01-12 23:27:13 -05:00 committed by GitHub
commit aef2a39e94
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 132 additions and 36 deletions

View File

@ -923,27 +923,34 @@ class StereoCamera {
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
gtsam::Cal3_S2* sharedCal,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
gtsam::Cal3DS2* sharedCal,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
gtsam::Cal3Bundler* sharedCal,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3_S2& cameras,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Bundler& cameras,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Fisheye& cameras,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Unified& cameras,
const gtsam::Point2Vector& measurements,
double rank_tol, bool optimize);
double rank_tol, bool optimize,
const gtsam::SharedNoiseModel& model = nullptr);
gtsam::Point3 triangulateNonlinear(const gtsam::Pose3Vector& poses,
gtsam::Cal3_S2* sharedCal,
const gtsam::Point2Vector& measurements,

View File

@ -6,28 +6,40 @@ All Rights Reserved
See LICENSE for the license information
Test Triangulation
Author: Frank Dellaert & Fan Jiang (Python)
Authors: Frank Dellaert & Fan Jiang (Python) & Sushmita Warrier & John Lambert
"""
import unittest
from typing import Iterable, List, Optional, Tuple, Union
import numpy as np
import gtsam
from gtsam import (Cal3_S2, Cal3Bundler, CameraSetCal3_S2,
CameraSetCal3Bundler, PinholeCameraCal3_S2,
PinholeCameraCal3Bundler, Point2Vector, Point3, Pose3,
Pose3Vector, Rot3)
from gtsam import (
Cal3_S2,
Cal3Bundler,
CameraSetCal3_S2,
CameraSetCal3Bundler,
PinholeCameraCal3_S2,
PinholeCameraCal3Bundler,
Point2,
Point2Vector,
Point3,
Pose3,
Pose3Vector,
Rot3,
)
from gtsam.utils.test_case import GtsamTestCase
UPRIGHT = Rot3.Ypr(-np.pi / 2, 0.0, -np.pi / 2)
class TestVisualISAMExample(GtsamTestCase):
""" Tests for triangulation with shared and individual calibrations """
class TestTriangulationExample(GtsamTestCase):
"""Tests for triangulation with shared and individual calibrations"""
def setUp(self):
""" Set up two camera poses """
"""Set up two camera poses"""
# Looking along X-axis, 1 meter above ground plane (x-y)
upright = Rot3.Ypr(-np.pi / 2, 0., -np.pi / 2)
pose1 = Pose3(upright, Point3(0, 0, 1))
pose1 = Pose3(UPRIGHT, Point3(0, 0, 1))
# create second camera 1 meter to the right of first camera
pose2 = pose1.compose(Pose3(Rot3(), Point3(1, 0, 0)))
@ -39,7 +51,15 @@ class TestVisualISAMExample(GtsamTestCase):
# landmark ~5 meters infront of camera
self.landmark = Point3(5, 0.5, 1.2)
def generate_measurements(self, calibration, camera_model, cal_params, camera_set=None):
def generate_measurements(
self,
calibration: Union[Cal3Bundler, Cal3_S2],
camera_model: Union[PinholeCameraCal3Bundler, PinholeCameraCal3_S2],
cal_params: Iterable[Iterable[Union[int, float]]],
camera_set: Optional[Union[CameraSetCal3Bundler,
CameraSetCal3_S2]] = None,
) -> Tuple[Point2Vector, Union[CameraSetCal3Bundler, CameraSetCal3_S2,
List[Cal3Bundler], List[Cal3_S2]]]:
"""
Generate vector of measurements for given calibration and camera model.
@ -48,6 +68,7 @@ class TestVisualISAMExample(GtsamTestCase):
camera_model: Camera model e.g. PinholeCameraCal3_S2
cal_params: Iterable of camera parameters for `calibration` e.g. [K1, K2]
camera_set: Cameraset object (for individual calibrations)
Returns:
list of measurements and list/CameraSet object for cameras
"""
@ -66,14 +87,15 @@ class TestVisualISAMExample(GtsamTestCase):
return measurements, cameras
def test_TriangulationExample(self):
""" Tests triangulation with shared Cal3_S2 calibration"""
def test_TriangulationExample(self) -> None:
"""Tests triangulation with shared Cal3_S2 calibration"""
# Some common constants
sharedCal = (1500, 1200, 0, 640, 480)
measurements, _ = self.generate_measurements(Cal3_S2,
PinholeCameraCal3_S2,
(sharedCal, sharedCal))
measurements, _ = self.generate_measurements(
calibration=Cal3_S2,
camera_model=PinholeCameraCal3_S2,
cal_params=(sharedCal, sharedCal))
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
Cal3_S2(sharedCal),
@ -95,15 +117,16 @@ class TestVisualISAMExample(GtsamTestCase):
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-2)
def test_distinct_Ks(self):
""" Tests triangulation with individual Cal3_S2 calibrations """
def test_distinct_Ks(self) -> None:
"""Tests triangulation with individual Cal3_S2 calibrations"""
# two camera parameters
K1 = (1500, 1200, 0, 640, 480)
K2 = (1600, 1300, 0, 650, 440)
measurements, cameras = self.generate_measurements(Cal3_S2,
PinholeCameraCal3_S2,
(K1, K2),
measurements, cameras = self.generate_measurements(
calibration=Cal3_S2,
camera_model=PinholeCameraCal3_S2,
cal_params=(K1, K2),
camera_set=CameraSetCal3_S2)
triangulated_landmark = gtsam.triangulatePoint3(cameras,
@ -112,15 +135,16 @@ class TestVisualISAMExample(GtsamTestCase):
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
def test_distinct_Ks_Bundler(self):
""" Tests triangulation with individual Cal3Bundler calibrations"""
def test_distinct_Ks_Bundler(self) -> None:
"""Tests triangulation with individual Cal3Bundler calibrations"""
# two camera parameters
K1 = (1500, 0, 0, 640, 480)
K2 = (1600, 0, 0, 650, 440)
measurements, cameras = self.generate_measurements(Cal3Bundler,
PinholeCameraCal3Bundler,
(K1, K2),
measurements, cameras = self.generate_measurements(
calibration=Cal3Bundler,
camera_model=PinholeCameraCal3Bundler,
cal_params=(K1, K2),
camera_set=CameraSetCal3Bundler)
triangulated_landmark = gtsam.triangulatePoint3(cameras,
@ -129,6 +153,71 @@ class TestVisualISAMExample(GtsamTestCase):
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
def test_triangulation_robust_three_poses(self) -> None:
"""Ensure triangulation with a robust model works."""
sharedCal = Cal3_S2(1500, 1200, 0, 640, 480)
# landmark ~5 meters infront of camera
landmark = Point3(5, 0.5, 1.2)
pose1 = Pose3(UPRIGHT, Point3(0, 0, 1))
pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0))
pose3 = pose1 * Pose3(Rot3.Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -0.1))
camera1 = PinholeCameraCal3_S2(pose1, sharedCal)
camera2 = PinholeCameraCal3_S2(pose2, sharedCal)
camera3 = PinholeCameraCal3_S2(pose3, sharedCal)
z1: Point2 = camera1.project(landmark)
z2: Point2 = camera2.project(landmark)
z3: Point2 = camera3.project(landmark)
poses = gtsam.Pose3Vector([pose1, pose2, pose3])
measurements = Point2Vector([z1, z2, z3])
# noise free, so should give exactly the landmark
actual = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=False)
self.assertTrue(np.allclose(landmark, actual, atol=1e-2))
# Add outlier
measurements[0] += Point2(100, 120) # very large pixel noise!
# now estimate does not match landmark
actual2 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=False)
# DLT is surprisingly robust, but still off (actual error is around 0.26m)
self.assertTrue(np.linalg.norm(landmark - actual2) >= 0.2)
self.assertTrue(np.linalg.norm(landmark - actual2) <= 0.5)
# Again with nonlinear optimization
actual3 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=True)
# result from nonlinear (but non-robust optimization) is close to DLT and still off
self.assertTrue(np.allclose(actual2, actual3, atol=0.1))
# Again with nonlinear optimization, this time with robust loss
model = gtsam.noiseModel.Robust.Create(
gtsam.noiseModel.mEstimator.Huber.Create(1.345),
gtsam.noiseModel.Unit.Create(2))
actual4 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=True,
model=model)
# using the Huber loss we now have a quite small error!! nice!
self.assertTrue(np.allclose(landmark, actual4, atol=0.05))
if __name__ == "__main__":
unittest.main()