Merge pull request #1391 from borglab/hybrid/pruning_test
commit
aebc3f94d4
|
@ -220,7 +220,7 @@ TEST(HybridBayesNet, Optimize) {
|
|||
|
||||
/* ****************************************************************************/
|
||||
// Test Bayes net error
|
||||
TEST(HybridBayesNet, logProbability) {
|
||||
TEST(HybridBayesNet, Pruning) {
|
||||
Switching s(3);
|
||||
|
||||
HybridBayesNet::shared_ptr posterior =
|
||||
|
@ -228,25 +228,22 @@ TEST(HybridBayesNet, logProbability) {
|
|||
EXPECT_LONGS_EQUAL(5, posterior->size());
|
||||
|
||||
HybridValues delta = posterior->optimize();
|
||||
auto actualTree = posterior->logProbability(delta.continuous());
|
||||
auto actualTree = posterior->evaluate(delta.continuous());
|
||||
|
||||
// Regression test on density tree.
|
||||
std::vector<DiscreteKey> discrete_keys = {{M(0), 2}, {M(1), 2}};
|
||||
std::vector<double> leaves = {1.8101301, 3.0128899, 2.8784032, 2.9825507};
|
||||
std::vector<double> leaves = {6.1112424, 20.346113, 17.785849, 19.738098};
|
||||
AlgebraicDecisionTree<Key> expected(discrete_keys, leaves);
|
||||
|
||||
// regression
|
||||
EXPECT(assert_equal(expected, actualTree, 1e-6));
|
||||
|
||||
// logProbability on pruned Bayes net
|
||||
// Prune and get probabilities
|
||||
auto prunedBayesNet = posterior->prune(2);
|
||||
auto prunedTree = prunedBayesNet.logProbability(delta.continuous());
|
||||
auto prunedTree = prunedBayesNet.evaluate(delta.continuous());
|
||||
|
||||
std::vector<double> pruned_leaves = {2e50, 3.0128899, 2e50, 2.9825507};
|
||||
// Regression test on pruned logProbability tree
|
||||
std::vector<double> pruned_leaves = {0.0, 20.346113, 0.0, 19.738098};
|
||||
AlgebraicDecisionTree<Key> expected_pruned(discrete_keys, pruned_leaves);
|
||||
|
||||
// regression
|
||||
// TODO(dellaert): fix pruning, I have no insight in this code.
|
||||
// EXPECT(assert_equal(expected_pruned, prunedTree, 1e-6));
|
||||
EXPECT(assert_equal(expected_pruned, prunedTree, 1e-6));
|
||||
|
||||
// Verify logProbability computation and check specific logProbability value
|
||||
const DiscreteValues discrete_values{{M(0), 1}, {M(1), 1}};
|
||||
|
@ -261,8 +258,9 @@ TEST(HybridBayesNet, logProbability) {
|
|||
logProbability +=
|
||||
posterior->at(4)->asDiscrete()->logProbability(hybridValues);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(logProbability, actualTree(discrete_values), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(logProbability, prunedTree(discrete_values), 1e-9);
|
||||
double density = exp(logProbability);
|
||||
EXPECT_DOUBLES_EQUAL(density, actualTree(discrete_values), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(density, prunedTree(discrete_values), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(logProbability, posterior->logProbability(hybridValues),
|
||||
1e-9);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue