Fixed Jacobians, optimization works
parent
b7dbcefa8b
commit
aea4f31096
|
|
@ -33,8 +33,10 @@ protected:
|
|||
double radius;
|
||||
};
|
||||
|
||||
/// Range measurements
|
||||
std::vector<double> measurements_;
|
||||
typedef SmartRangeFactor This;
|
||||
|
||||
std::vector<double> measurements_; ///< Range measurements
|
||||
double sigma_; ///< standard deviation on noise
|
||||
|
||||
public:
|
||||
|
||||
|
|
@ -43,7 +45,7 @@ public:
|
|||
}
|
||||
|
||||
/** standard binary constructor */
|
||||
SmartRangeFactor(const SharedNoiseModel& model) {
|
||||
SmartRangeFactor(double sigma) : NoiseModelFactor(noiseModel::Isotropic::Sigma(1,sigma_)), sigma_(sigma) {
|
||||
}
|
||||
|
||||
virtual ~SmartRangeFactor() {
|
||||
|
|
@ -53,6 +55,7 @@ public:
|
|||
void addRange(Key key, double measuredRange) {
|
||||
keys_.push_back(key);
|
||||
measurements_.push_back(measuredRange);
|
||||
noiseModel_ = noiseModel::Isotropic::Sigma(keys_.size(),sigma_);
|
||||
}
|
||||
|
||||
// Testable
|
||||
|
|
@ -100,30 +103,40 @@ public:
|
|||
*/
|
||||
virtual Vector unwhitenedError(const Values& x,
|
||||
boost::optional<std::vector<Matrix>&> H = boost::none) const {
|
||||
size_t K = size();
|
||||
Vector errors = zero(K);
|
||||
if (K >= 3) {
|
||||
size_t n = size();
|
||||
if (H) assert(H->size()==n);
|
||||
Vector errors = zero(n);
|
||||
if (n >= 3) {
|
||||
// create n circles corresponding to measured range around each pose
|
||||
std::list<Circle2> circles;
|
||||
for (size_t i = 0; i < K; i++) {
|
||||
const Pose2& pose = x.at<Pose2>(keys_[i]);
|
||||
circles.push_back(Circle2(pose.translation(), measurements_[i]));
|
||||
for (size_t j = 0; j < n; j++) {
|
||||
const Pose2& pose = x.at<Pose2>(keys_[j]);
|
||||
circles.push_back(Circle2(pose.translation(), measurements_[j]));
|
||||
}
|
||||
// triangulate to get the optimized point
|
||||
Point2 optimizedPoint = triangulate(circles);
|
||||
if (H)
|
||||
*H = std::vector<Matrix>();
|
||||
for (size_t i = 0; i < K; i++) {
|
||||
const Pose2& pose = x.at<Pose2>(keys_[i]);
|
||||
// now evaluate the errors between predicted and measured range
|
||||
for (size_t j = 0; j < n; j++) {
|
||||
const Pose2& pose = x.at<Pose2>(keys_[j]);
|
||||
if (H) {
|
||||
Matrix Hi;
|
||||
errors[i] = pose.range(optimizedPoint, Hi) - measurements_[i];
|
||||
H->push_back(Hi);
|
||||
} else
|
||||
errors[i] = pose.range(optimizedPoint) - measurements_[i];
|
||||
// calculate n*3 derivative for each of the n poses
|
||||
(*H)[j] = zeros(n,3);
|
||||
Matrix Hj;
|
||||
errors[j] = pose.range(optimizedPoint, Hj) - measurements_[j];
|
||||
(*H)[j].row(j) = Hj;
|
||||
}
|
||||
else
|
||||
errors[j] = pose.range(optimizedPoint) - measurements_[j];
|
||||
}
|
||||
}
|
||||
return errors;
|
||||
}
|
||||
|
||||
/// @return a deep copy of this factor
|
||||
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
||||
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
||||
gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
|
||||
|
||||
};
|
||||
|
||||
} // \namespace gtsam
|
||||
|
|
|
|||
|
|
@ -17,27 +17,28 @@
|
|||
*/
|
||||
|
||||
#include <gtsam_unstable/slam/SmartRangeFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
const noiseModel::Base::shared_ptr gaussian = noiseModel::Isotropic::Sigma(1,
|
||||
2.0);
|
||||
static const double sigma = 2.0;
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
TEST( SmartRangeFactor, constructor ) {
|
||||
SmartRangeFactor f1;
|
||||
LONGS_EQUAL(0, f1.size())
|
||||
SmartRangeFactor f2(gaussian);
|
||||
SmartRangeFactor f2(sigma);
|
||||
LONGS_EQUAL(0, f2.size())
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
TEST( SmartRangeFactor, addRange ) {
|
||||
SmartRangeFactor f(gaussian);
|
||||
SmartRangeFactor f(sigma);
|
||||
f.addRange(1, 10);
|
||||
f.addRange(1, 12);
|
||||
LONGS_EQUAL(2, f.size())
|
||||
|
|
@ -45,7 +46,7 @@ TEST( SmartRangeFactor, addRange ) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
|
||||
TEST( SmartRangeFactor, unwhitenedError ) {
|
||||
TEST( SmartRangeFactor, allAtOnce ) {
|
||||
// Test situation:
|
||||
Point2 p(0, 10);
|
||||
Pose2 pose1(0, 0, 0), pose2(5, 0, 0), pose3(5, 5, 0);
|
||||
|
|
@ -59,7 +60,7 @@ TEST( SmartRangeFactor, unwhitenedError ) {
|
|||
values.insert(2, pose2);
|
||||
values.insert(3, pose3);
|
||||
|
||||
SmartRangeFactor f(gaussian);
|
||||
SmartRangeFactor f(sigma);
|
||||
f.addRange(1, r1);
|
||||
|
||||
// Whenever there are two ranges or less, error should be zero
|
||||
|
|
@ -70,14 +71,39 @@ TEST( SmartRangeFactor, unwhitenedError ) {
|
|||
EXPECT(assert_equal(Vector2(0,0), actual2));
|
||||
|
||||
f.addRange(3, r3);
|
||||
vector<Matrix> H;
|
||||
Vector actual3 = f.unwhitenedError(values,H);
|
||||
vector<Matrix> H(3);
|
||||
Vector actual3 = f.unwhitenedError(values);
|
||||
EXPECT_LONGS_EQUAL(3,f.keys().size());
|
||||
EXPECT(assert_equal(Vector3(0,0,0), actual3));
|
||||
|
||||
// Check keys and Jacobian
|
||||
EXPECT_LONGS_EQUAL(3,f.keys().size());
|
||||
EXPECT(assert_equal(Matrix_(1,3,0.0,-1.0,0.0), H.front()));
|
||||
EXPECT(assert_equal(Matrix_(1,3,sqrt(2)/2,-sqrt(2)/2,0.0), H.back()));
|
||||
Vector actual4 = f.unwhitenedError(values,H); // with H now !
|
||||
EXPECT(assert_equal(Vector3(0,0,0), actual4));
|
||||
CHECK(assert_equal(Matrix_(3,3, 0.0,-1.0,0.0, 0.0,0.0,0.0, 0.0,0.0,0.0), H.front()));
|
||||
CHECK(assert_equal(Matrix_(3,3, 0.0,0.0,0.0, 0.0,0.0,0.0, sqrt(2)/2,-sqrt(2)/2,0.0), H.back()));
|
||||
|
||||
// Test clone
|
||||
NonlinearFactor::shared_ptr clone = f.clone();
|
||||
EXPECT_LONGS_EQUAL(3,clone->keys().size());
|
||||
|
||||
// Create initial value for optimization
|
||||
Values initial;
|
||||
initial.insert(1, Pose2(0, 0, 0));
|
||||
initial.insert(2, Pose2(5, 0, 0));
|
||||
initial.insert(3, Pose2(5, 6, 0));
|
||||
Vector actual5 = f.unwhitenedError(initial);
|
||||
EXPECT(assert_equal(Vector3(0,0,sqrt(25+16)-sqrt(50)), actual5));
|
||||
|
||||
// Try optimizing
|
||||
NonlinearFactorGraph graph;
|
||||
graph.add(f);
|
||||
LevenbergMarquardtParams params;
|
||||
//params.setVerbosity("ERROR");
|
||||
Values result = LevenbergMarquardtOptimizer(graph, initial, params).optimize();
|
||||
EXPECT(assert_equal(values.at<Pose2>(1), result.at<Pose2>(1)));
|
||||
EXPECT(assert_equal(values.at<Pose2>(2), result.at<Pose2>(2)));
|
||||
// only the third pose will be changed, converges on following:
|
||||
EXPECT(assert_equal(Pose2(5.52157630366, 5.58273895707, 0), result.at<Pose2>(3)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
Loading…
Reference in New Issue