Merge pull request #1817 from truher/team100_self_calibration_example
added SelfCalibrationExample.pyrelease/4.3a0
commit
ae7c93b58e
|
@ -0,0 +1,122 @@
|
|||
# pylint: disable=unused-import,consider-using-from-import,invalid-name,no-name-in-module,no-member,missing-function-docstring,too-many-locals
|
||||
"""
|
||||
Transcription of SelfCalibrationExample.cpp
|
||||
"""
|
||||
import math
|
||||
|
||||
from gtsam import Cal3_S2
|
||||
from gtsam.noiseModel import Diagonal, Isotropic
|
||||
|
||||
# SFM-specific factors
|
||||
from gtsam import GeneralSFMFactor2Cal3_S2 # does calibration !
|
||||
from gtsam import PinholeCameraCal3_S2
|
||||
|
||||
# Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
|
||||
from gtsam import Point2
|
||||
from gtsam import Point3, Pose3, Rot3
|
||||
|
||||
# Inference and optimization
|
||||
from gtsam import NonlinearFactorGraph, DoglegOptimizer, Values
|
||||
from gtsam.symbol_shorthand import K, L, X
|
||||
|
||||
|
||||
# this is a direct translation of examples/SFMData.h
|
||||
# which is slightly different from python/gtsam/examples/SFMdata.py.
|
||||
def createPoints() -> list[Point3]:
|
||||
"""
|
||||
Create the set of ground-truth landmarks
|
||||
"""
|
||||
return [
|
||||
Point3(10.0, 10.0, 10.0),
|
||||
Point3(-10.0, 10.0, 10.0),
|
||||
Point3(-10.0, -10.0, 10.0),
|
||||
Point3(10.0, -10.0, 10.0),
|
||||
Point3(10.0, 10.0, -10.0),
|
||||
Point3(-10.0, 10.0, -10.0),
|
||||
Point3(-10.0, -10.0, -10.0),
|
||||
Point3(10.0, -10.0, -10.0),
|
||||
]
|
||||
|
||||
|
||||
def createPoses(
|
||||
init: Pose3 = Pose3(Rot3.Ypr(math.pi / 2, 0, -math.pi / 2), Point3(30, 0, 0)),
|
||||
delta: Pose3 = Pose3(
|
||||
Rot3.Ypr(0, -math.pi / 4, 0),
|
||||
Point3(math.sin(math.pi / 4) * 30, 0, 30 * (1 - math.sin(math.pi / 4))),
|
||||
),
|
||||
steps: int = 8,
|
||||
) -> list[Pose3]:
|
||||
"""
|
||||
Create the set of ground-truth poses
|
||||
Default values give a circular trajectory,
|
||||
radius 30 at pi/4 intervals, always facing the circle center
|
||||
"""
|
||||
poses: list[Pose3] = []
|
||||
poses.append(init)
|
||||
for i in range(1, steps):
|
||||
poses.append(poses[i - 1].compose(delta))
|
||||
return poses
|
||||
|
||||
|
||||
def main() -> None:
|
||||
# Create the set of ground-truth
|
||||
points: list[Point3] = createPoints()
|
||||
poses: list[Pose3] = createPoses()
|
||||
|
||||
# Create the factor graph
|
||||
graph = NonlinearFactorGraph()
|
||||
|
||||
# Add a prior on pose x1.
|
||||
# 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
poseNoise = Diagonal.Sigmas([0.1, 0.1, 0.1, 0.3, 0.3, 0.3])
|
||||
graph.addPriorPose3(X(0), poses[0], poseNoise)
|
||||
|
||||
# Simulated measurements from each camera pose, adding them to the factor graph
|
||||
Kcal = Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
|
||||
measurementNoise = Isotropic.Sigma(2, 1.0)
|
||||
for i, pose in enumerate(poses):
|
||||
for j, point in enumerate(points):
|
||||
camera = PinholeCameraCal3_S2(pose, Kcal)
|
||||
measurement: Point2 = camera.project(point)
|
||||
# The only real difference with the Visual SLAM example is that here we
|
||||
# use a different factor type, that also calculates the Jacobian with
|
||||
# respect to calibration
|
||||
graph.add(
|
||||
GeneralSFMFactor2Cal3_S2(
|
||||
measurement,
|
||||
measurementNoise,
|
||||
X(i),
|
||||
L(j),
|
||||
K(0),
|
||||
)
|
||||
)
|
||||
|
||||
# Add a prior on the position of the first landmark.
|
||||
pointNoise = Isotropic.Sigma(3, 0.1)
|
||||
graph.addPriorPoint3(L(0), points[0], pointNoise) # add directly to graph
|
||||
|
||||
# Add a prior on the calibration.
|
||||
calNoise = Diagonal.Sigmas([500, 500, 0.1, 100, 100])
|
||||
graph.addPriorCal3_S2(K(0), Kcal, calNoise)
|
||||
|
||||
# Create the initial estimate to the solution
|
||||
# now including an estimate on the camera calibration parameters
|
||||
initialEstimate = Values()
|
||||
initialEstimate.insert(K(0), Cal3_S2(60.0, 60.0, 0.0, 45.0, 45.0))
|
||||
for i, pose in enumerate(poses):
|
||||
initialEstimate.insert(
|
||||
X(i),
|
||||
pose.compose(
|
||||
Pose3(Rot3.Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))
|
||||
),
|
||||
)
|
||||
for j, point in enumerate(points):
|
||||
initialEstimate.insert(L(j), point + Point3(-0.25, 0.20, 0.15))
|
||||
|
||||
# Optimize the graph and print results
|
||||
result: Values = DoglegOptimizer(graph, initialEstimate).optimize()
|
||||
result.print("Final results:\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue