Use EdgeKey logic
parent
e6bfcada40
commit
ade1207334
|
@ -17,56 +17,83 @@
|
|||
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/geometry/FundamentalMatrix.h>
|
||||
#include <gtsam/inference/EdgeKey.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
template <typename F>
|
||||
struct TripletError {
|
||||
Point2 p0, p1, p2;
|
||||
|
||||
/// vector of errors returns 6D vector
|
||||
Vector evaluateError(const F& F01, const F& F12, const F& F20, //
|
||||
Matrix* H01, Matrix* H12, Matrix* H20) const {
|
||||
std::function<Vector6(F, F, F)> fn = [&](const F& F01, const F& F12,
|
||||
const F& F20) {
|
||||
Vector6 error;
|
||||
error << //
|
||||
F::transfer(F01.matrix(), p1, F20.matrix().transpose(), p2) - p0,
|
||||
F::transfer(F01.matrix().transpose(), p0, F12.matrix(), p2) - p1,
|
||||
F::transfer(F20.matrix(), p0, F12.matrix().transpose(), p1) - p2;
|
||||
return error;
|
||||
};
|
||||
if (H01) *H01 = numericalDerivative31<Vector6, F, F, F>(fn, F01, F12, F20);
|
||||
if (H12) *H12 = numericalDerivative32<Vector6, F, F, F>(fn, F01, F12, F20);
|
||||
if (H20) *H20 = numericalDerivative33<Vector6, F, F, F>(fn, F01, F12, F20);
|
||||
return fn(F01, F12, F20);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Binary factor in the context of Structure from Motion (SfM).
|
||||
* It is used to transfer points between different views based on the
|
||||
* fundamental matrices between these views. The factor computes the error
|
||||
* between the transferred points `pi` and `pj`, and the actual point `pk` in
|
||||
* the target view. Jacobians are done using numerical differentiation.
|
||||
*/
|
||||
template <typename F>
|
||||
class TransferFactor : public NoiseModelFactorN<F, F> {
|
||||
Point2 p0, p1, p2;
|
||||
EdgeKey key1_, key2_; ///< the two EdgeKeys
|
||||
Point2 pi, pj, pk; ///< The points in the three views
|
||||
|
||||
public:
|
||||
// Constructor
|
||||
TransferFactor(Key key1, Key key2, const Point2& p0, const Point2& p1,
|
||||
const Point2& p2, const SharedNoiseModel& model = nullptr)
|
||||
: NoiseModelFactorN<F, F>(model, key1, key2), p0(p0), p1(p1), p2(p2) {}
|
||||
/**
|
||||
* @brief Constructor for the TransferFactor class.
|
||||
*
|
||||
* Uses EdgeKeys to determine how to use the two fundamental matrix unknowns
|
||||
* F1 and F2, to transfer points pi and pj to the third view, and minimize the
|
||||
* difference with pk.
|
||||
*
|
||||
* The edge keys must represent valid edges for the transfer operation,
|
||||
* specifically one of the following configurations:
|
||||
* - (i, k) and (j, k)
|
||||
* - (i, k) and (k, j)
|
||||
* - (k, i) and (j, k)
|
||||
* - (k, i) and (k, j)
|
||||
*
|
||||
* @param key1 First EdgeKey specifying F1: (i, k) or (k, i).
|
||||
* @param key2 Second EdgeKey specifying F2: (j, k) or (k, j).
|
||||
* @param pi The point in the first view (i).
|
||||
* @param pj The point in the second view (j).
|
||||
* @param pk The point in the third (and transfer target) view (k).
|
||||
* @param model An optional SharedNoiseModel that defines the noise model
|
||||
* for this factor. Defaults to nullptr.
|
||||
*/
|
||||
TransferFactor(EdgeKey key1, EdgeKey key2, const Point2& pi, const Point2& pj,
|
||||
const Point2& pk, const SharedNoiseModel& model = nullptr)
|
||||
: NoiseModelFactorN<F, F>(model, key1, key2),
|
||||
key1_(key1),
|
||||
key2_(key2),
|
||||
pi(pi),
|
||||
pj(pj),
|
||||
pk(pk) {}
|
||||
|
||||
// Create Matrix3 objects based on EdgeKey configurations
|
||||
std::pair<Matrix3, Matrix3> getMatrices(const F& F1, const F& F2) const {
|
||||
// Fill Fki and Fkj based on EdgeKey configurations
|
||||
if (key1_.i() == key2_.i()) {
|
||||
return {F1.matrix(), F2.matrix()};
|
||||
} else if (key1_.i() == key2_.j()) {
|
||||
return {F1.matrix(), F2.matrix().transpose()};
|
||||
} else if (key1_.j() == key2_.i()) {
|
||||
return {F1.matrix().transpose(), F2.matrix()};
|
||||
} else if (key1_.j() == key2_.j()) {
|
||||
return {F1.matrix().transpose(), F2.matrix().transpose()};
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"TransferFactor: invalid EdgeKey configuration.");
|
||||
}
|
||||
}
|
||||
|
||||
/// vector of errors returns 2D vector
|
||||
Vector evaluateError(const F& F12, const F& F20, //
|
||||
OptionalMatrixType H12 = nullptr,
|
||||
OptionalMatrixType H20 = nullptr) const override {
|
||||
std::function<Vector2(F, F)> fn = [&](const F& F12, const F& F20) {
|
||||
Vector2 error;
|
||||
error << //
|
||||
F::transfer(F20.matrix(), p0, F12.matrix().transpose(), p1) - p2;
|
||||
return error;
|
||||
Vector evaluateError(const F& F1, const F& F2,
|
||||
OptionalMatrixType H1 = nullptr,
|
||||
OptionalMatrixType H2 = nullptr) const override {
|
||||
std::function<Point2(F, F)> transfer = [&](const F& F1, const F& F2) {
|
||||
auto [Fki, Fkj] = getMatrices(F1, F2);
|
||||
return F::transfer(Fki, pi, Fkj, pj);
|
||||
};
|
||||
if (H12) *H12 = numericalDerivative21<Vector2, F, F>(fn, F12, F20);
|
||||
if (H20) *H20 = numericalDerivative22<Vector2, F, F>(fn, F12, F20);
|
||||
return fn(F12, F20);
|
||||
if (H1) *H1 = numericalDerivative21<Point2, F, F>(transfer, F1, F2);
|
||||
if (H2) *H2 = numericalDerivative22<Point2, F, F>(transfer, F1, F2);
|
||||
return transfer(F1, F2) - pk;
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -6,20 +6,15 @@
|
|||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <gtsam/geometry/EssentialMatrix.h>
|
||||
#include <gtsam/geometry/FundamentalMatrix.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/geometry/Rot3.h>
|
||||
#include <gtsam/geometry/SimpleCamera.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/factorTesting.h>
|
||||
#include <gtsam/sfm/TransferFactor.h>
|
||||
|
||||
using namespace gtsam;
|
||||
|
||||
double focalLength = 1000;
|
||||
Point2 principalPoint(640 / 2, 480 / 2);
|
||||
|
||||
//*************************************************************************
|
||||
/// Generate three cameras on a circle, looking in
|
||||
std::array<Pose3, 3> generateCameraPoses() {
|
||||
|
@ -34,6 +29,7 @@ std::array<Pose3, 3> generateCameraPoses() {
|
|||
return cameraPoses;
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
// Function to generate a TripleF from camera poses
|
||||
TripleF<SimpleFundamentalMatrix> generateTripleF(
|
||||
const std::array<Pose3, 3>& cameraPoses) {
|
||||
|
@ -48,9 +44,7 @@ TripleF<SimpleFundamentalMatrix> generateTripleF(
|
|||
return {F[0], F[1], F[2]}; // Return a TripleF instance
|
||||
}
|
||||
|
||||
double focalLength = 1000;
|
||||
Point2 principalPoint(640 / 2, 480 / 2);
|
||||
|
||||
//*************************************************************************
|
||||
// Test for TransferFactor
|
||||
TEST(TransferFactor, Jacobians) {
|
||||
// Generate cameras on a circle
|
||||
|
@ -70,28 +64,29 @@ TEST(TransferFactor, Jacobians) {
|
|||
}
|
||||
|
||||
// Create a TransferFactor
|
||||
TripletError<SimpleFundamentalMatrix> error{p[0], p[1], p[2]};
|
||||
Matrix H01, H12, H20;
|
||||
Vector e = error.evaluateError(triplet.F01, triplet.F12, triplet.F20, &H01,
|
||||
&H12, &H20);
|
||||
std::cout << "Error: " << e << std::endl;
|
||||
std::cout << H01 << std::endl << std::endl;
|
||||
std::cout << H12 << std::endl << std::endl;
|
||||
std::cout << H20 << std::endl;
|
||||
EdgeKey key01(0, 1), key12(1, 2), key20(2, 0);
|
||||
TransferFactor<SimpleFundamentalMatrix> //
|
||||
factor0{key01, key20, p[1], p[2], p[0]},
|
||||
factor1{key12, key01, p[2], p[0], p[1]},
|
||||
factor2{key20, key12, p[0], p[1], p[2]};
|
||||
|
||||
// Create a TransferFactor
|
||||
TransferFactor<SimpleFundamentalMatrix> factor{0, 1, p[0], p[1], p[2]};
|
||||
Matrix H0, H1;
|
||||
Vector e2 = factor.evaluateError(triplet.F12, triplet.F20, &H0, &H1);
|
||||
std::cout << "Error: " << e2 << std::endl;
|
||||
std::cout << H0 << std::endl << std::endl;
|
||||
std::cout << H1 << std::endl << std::endl;
|
||||
// Check that getMatrices is correct
|
||||
auto [Fki, Fkj] = factor2.getMatrices(triplet.Fca, triplet.Fbc);
|
||||
EXPECT(assert_equal<Matrix3>(triplet.Fca.matrix(), Fki));
|
||||
EXPECT(assert_equal<Matrix3>(triplet.Fbc.matrix().transpose(), Fkj));
|
||||
|
||||
// Check Jacobians
|
||||
// Create Values with edge keys
|
||||
Values values;
|
||||
values.insert(0, triplet.F12);
|
||||
values.insert(1, triplet.F20);
|
||||
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-7);
|
||||
values.insert(key01, triplet.Fab);
|
||||
values.insert(key12, triplet.Fbc);
|
||||
values.insert(key20, triplet.Fca);
|
||||
|
||||
// Check error and Jacobians
|
||||
for (auto&& f : {factor0, factor1, factor2}) {
|
||||
Vector error = f.unwhitenedError(values);
|
||||
EXPECT(assert_equal<Vector>(Z_2x1, error));
|
||||
EXPECT_CORRECT_FACTOR_JACOBIANS(f, values, 1e-5, 1e-7);
|
||||
}
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
|
|
Loading…
Reference in New Issue