formatting and docs update

release/4.3a0
Varun Agrawal 2022-06-03 13:08:32 -04:00
parent 89768cf692
commit ad77a45a0d
2 changed files with 13 additions and 13 deletions

View File

@ -36,8 +36,7 @@ GaussianMixture::GaussianMixture(
conditionals_(conditionals) {}
/* *******************************************************************************/
const GaussianMixture::Conditionals &
GaussianMixture::conditionals() {
const GaussianMixture::Conditionals &GaussianMixture::conditionals() {
return conditionals_;
}
@ -48,8 +47,8 @@ GaussianMixture GaussianMixture::FromConditionals(
const std::vector<GaussianConditional::shared_ptr> &conditionalsList) {
Conditionals dt(discreteParents, conditionalsList);
return GaussianMixture(continuousFrontals, continuousParents,
discreteParents, dt);
return GaussianMixture(continuousFrontals, continuousParents, discreteParents,
dt);
}
/* *******************************************************************************/
@ -66,8 +65,7 @@ GaussianMixture::Sum GaussianMixture::add(
}
/* *******************************************************************************/
GaussianMixture::Sum
GaussianMixture::asGaussianFactorGraphTree() const {
GaussianMixture::Sum GaussianMixture::asGaussianFactorGraphTree() const {
auto lambda = [](const GaussianFactor::shared_ptr &factor) {
GaussianFactorGraph result;
result.push_back(factor);
@ -77,8 +75,7 @@ GaussianMixture::asGaussianFactorGraphTree() const {
}
/* *******************************************************************************/
bool GaussianMixture::equals(const HybridFactor &lf,
double tol) const {
bool GaussianMixture::equals(const HybridFactor &lf, double tol) const {
const This *e = dynamic_cast<const This *>(&lf);
return e != nullptr && BaseFactor::equals(*e, tol);
}

View File

@ -28,11 +28,14 @@ namespace gtsam {
/**
* @brief A conditional of gaussian mixtures indexed by discrete variables, as
* part of a Bayes Network.
* part of a Bayes Network. This is the result of the elimination of a
* continuous variable in a hybrid scheme, such that the remaining variables are
* discrete+continuous.
*
* Represents the conditional density P(X | M, Z) where X is a continuous random
* variable, M is the selection of discrete variables corresponding to a subset
* of the Gaussian variables and Z is parent of this node
* Represents the conditional density P(X | M, Z) where X is the set of
* continuous random variables, M is the selection of discrete variables
* corresponding to a subset of the Gaussian variables and Z is parent of this
* node .
*
* The probability P(x|y,z,...) is proportional to
* \f$ \sum_i k_i \exp - \frac{1}{2} |R_i x - (d_i - S_i y - T_i z - ...)|^2 \f$