Full optimization

release/4.3a0
Frank 2016-01-27 14:16:18 -08:00
parent 69a53f8e00
commit ac6fb495a6
2 changed files with 60 additions and 8 deletions

View File

@ -2,6 +2,7 @@
A script validating the ImuFactor inference.
"""
from __future__ import print_function
import math
import matplotlib.pyplot as plt
import numpy as np
@ -10,21 +11,72 @@ from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam_utils import plotPose3
from PreintegrationExample import PreintegrationExample
from PreintegrationExample import PreintegrationExample, POSES_FIG
# shorthand symbols:
BIAS_KEY = int(gtsam.Symbol('b', 0))
V = lambda j: int(gtsam.Symbol('v', j))
X = lambda i: int(gtsam.Symbol('x', i))
class ImuFactorExample(PreintegrationExample):
def run(self):
# simulate the loop up to the top
T = self.timeForOneLoop
graph = gtsam.NonlinearFactorGraph()
for i in [0, 12]:
priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
graph.push_back(gtsam.PriorFactorPose3(X(i), gtsam.Pose3(), priorNoise))
velNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
graph.push_back(gtsam.PriorFactorVector3(V(i), np.array([2, 0, 0]), velNoise))
i = 0 # state index
# initialize data structure for pre-integrated IMU measurements
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
for i, t in enumerate(np.arange(0, T, self.dt)):
# simulate the loop
T = self.timeForOneLoop
for k, t in enumerate(np.arange(0, T, self.dt)):
# get measurements and add them to PIM
measuredOmega = self.runner.measuredAngularVelocity(t)
measuredAcc = self.runner.measuredSpecificForce(t)
if i % 25 == 0:
pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)
# Plot every second
if k % 100 == 0:
self.plotImu(t, measuredOmega, measuredAcc)
self.plotGroundTruthPose(t)
# create factor every second
if (k + 1) % 100 == 0:
factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1), BIAS_KEY, pim)
graph.push_back(factor)
pim.resetIntegration()
i += 1
graph.print()
num_poses = i + 1
initial = gtsam.Values()
initial.insert(BIAS_KEY, gtsam.ConstantBias())
for i in range(num_poses):
initial.insert(X(i), gtsam.Pose3())
initial.insert(V(i), np.zeros(3, np.float))
# optimize using Levenberg-Marquardt optimization
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("SUMMARY")
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
# result.print("\Result:\n")
print(self.actualBias)
# Plot cameras
i = 0
while result.exists(X(i)):
pose_i = result.pose3_at(X(i))
plotPose3(POSES_FIG, pose_i, 0.1)
i += 1
plt.ioff()
plt.show()

View File

@ -12,7 +12,7 @@ import gtsam
from gtsam_utils import plotPose3
IMU_FIG = 1
GROUND_TRUTH_FIG = 2
POSES_FIG = 2
class PreintegrationExample(object):
@ -92,7 +92,7 @@ class PreintegrationExample(object):
def plotGroundTruthPose(self, t):
# plot ground truth pose, as well as prediction from integrated IMU measurements
actualPose = self.scenario.pose(t)
plotPose3(GROUND_TRUTH_FIG, actualPose, 0.3)
plotPose3(POSES_FIG, actualPose, 0.3)
ax = plt.gca()
ax.set_xlim3d(-self.radius, self.radius)
ax.set_ylim3d(-self.radius, self.radius)
@ -111,7 +111,7 @@ class PreintegrationExample(object):
self.plotGroundTruthPose(t)
pim = self.runner.integrate(t, self.actualBias, True)
predictedNavState = self.runner.predict(pim, self.actualBias)
plotPose3(GROUND_TRUTH_FIG, predictedNavState.pose(), 0.1)
plotPose3(POSES_FIG, predictedNavState.pose(), 0.1)
plt.ioff()
plt.show()