Full optimization
parent
69a53f8e00
commit
ac6fb495a6
|
@ -2,6 +2,7 @@
|
||||||
A script validating the ImuFactor inference.
|
A script validating the ImuFactor inference.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
import math
|
import math
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -10,21 +11,72 @@ from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
|
||||||
import gtsam
|
import gtsam
|
||||||
from gtsam_utils import plotPose3
|
from gtsam_utils import plotPose3
|
||||||
from PreintegrationExample import PreintegrationExample
|
from PreintegrationExample import PreintegrationExample, POSES_FIG
|
||||||
|
|
||||||
|
# shorthand symbols:
|
||||||
|
BIAS_KEY = int(gtsam.Symbol('b', 0))
|
||||||
|
V = lambda j: int(gtsam.Symbol('v', j))
|
||||||
|
X = lambda i: int(gtsam.Symbol('x', i))
|
||||||
|
|
||||||
class ImuFactorExample(PreintegrationExample):
|
class ImuFactorExample(PreintegrationExample):
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
# simulate the loop up to the top
|
graph = gtsam.NonlinearFactorGraph()
|
||||||
T = self.timeForOneLoop
|
for i in [0, 12]:
|
||||||
|
priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
|
||||||
|
graph.push_back(gtsam.PriorFactorPose3(X(i), gtsam.Pose3(), priorNoise))
|
||||||
|
velNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
|
||||||
|
graph.push_back(gtsam.PriorFactorVector3(V(i), np.array([2, 0, 0]), velNoise))
|
||||||
|
|
||||||
|
i = 0 # state index
|
||||||
|
|
||||||
|
# initialize data structure for pre-integrated IMU measurements
|
||||||
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
|
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
|
||||||
for i, t in enumerate(np.arange(0, T, self.dt)):
|
|
||||||
|
# simulate the loop
|
||||||
|
T = self.timeForOneLoop
|
||||||
|
for k, t in enumerate(np.arange(0, T, self.dt)):
|
||||||
|
# get measurements and add them to PIM
|
||||||
measuredOmega = self.runner.measuredAngularVelocity(t)
|
measuredOmega = self.runner.measuredAngularVelocity(t)
|
||||||
measuredAcc = self.runner.measuredSpecificForce(t)
|
measuredAcc = self.runner.measuredSpecificForce(t)
|
||||||
if i % 25 == 0:
|
pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)
|
||||||
|
|
||||||
|
# Plot every second
|
||||||
|
if k % 100 == 0:
|
||||||
self.plotImu(t, measuredOmega, measuredAcc)
|
self.plotImu(t, measuredOmega, measuredAcc)
|
||||||
self.plotGroundTruthPose(t)
|
self.plotGroundTruthPose(t)
|
||||||
|
|
||||||
|
# create factor every second
|
||||||
|
if (k + 1) % 100 == 0:
|
||||||
|
factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1), BIAS_KEY, pim)
|
||||||
|
graph.push_back(factor)
|
||||||
|
pim.resetIntegration()
|
||||||
|
i += 1
|
||||||
|
|
||||||
|
graph.print()
|
||||||
|
num_poses = i + 1
|
||||||
|
|
||||||
|
initial = gtsam.Values()
|
||||||
|
initial.insert(BIAS_KEY, gtsam.ConstantBias())
|
||||||
|
for i in range(num_poses):
|
||||||
|
initial.insert(X(i), gtsam.Pose3())
|
||||||
|
initial.insert(V(i), np.zeros(3, np.float))
|
||||||
|
|
||||||
|
# optimize using Levenberg-Marquardt optimization
|
||||||
|
params = gtsam.LevenbergMarquardtParams()
|
||||||
|
params.setVerbosityLM("SUMMARY")
|
||||||
|
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
|
||||||
|
result = optimizer.optimize()
|
||||||
|
# result.print("\Result:\n")
|
||||||
|
print(self.actualBias)
|
||||||
|
|
||||||
|
# Plot cameras
|
||||||
|
i = 0
|
||||||
|
while result.exists(X(i)):
|
||||||
|
pose_i = result.pose3_at(X(i))
|
||||||
|
plotPose3(POSES_FIG, pose_i, 0.1)
|
||||||
|
i += 1
|
||||||
|
|
||||||
plt.ioff()
|
plt.ioff()
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
|
@ -12,7 +12,7 @@ import gtsam
|
||||||
from gtsam_utils import plotPose3
|
from gtsam_utils import plotPose3
|
||||||
|
|
||||||
IMU_FIG = 1
|
IMU_FIG = 1
|
||||||
GROUND_TRUTH_FIG = 2
|
POSES_FIG = 2
|
||||||
|
|
||||||
class PreintegrationExample(object):
|
class PreintegrationExample(object):
|
||||||
|
|
||||||
|
@ -92,7 +92,7 @@ class PreintegrationExample(object):
|
||||||
def plotGroundTruthPose(self, t):
|
def plotGroundTruthPose(self, t):
|
||||||
# plot ground truth pose, as well as prediction from integrated IMU measurements
|
# plot ground truth pose, as well as prediction from integrated IMU measurements
|
||||||
actualPose = self.scenario.pose(t)
|
actualPose = self.scenario.pose(t)
|
||||||
plotPose3(GROUND_TRUTH_FIG, actualPose, 0.3)
|
plotPose3(POSES_FIG, actualPose, 0.3)
|
||||||
ax = plt.gca()
|
ax = plt.gca()
|
||||||
ax.set_xlim3d(-self.radius, self.radius)
|
ax.set_xlim3d(-self.radius, self.radius)
|
||||||
ax.set_ylim3d(-self.radius, self.radius)
|
ax.set_ylim3d(-self.radius, self.radius)
|
||||||
|
@ -111,7 +111,7 @@ class PreintegrationExample(object):
|
||||||
self.plotGroundTruthPose(t)
|
self.plotGroundTruthPose(t)
|
||||||
pim = self.runner.integrate(t, self.actualBias, True)
|
pim = self.runner.integrate(t, self.actualBias, True)
|
||||||
predictedNavState = self.runner.predict(pim, self.actualBias)
|
predictedNavState = self.runner.predict(pim, self.actualBias)
|
||||||
plotPose3(GROUND_TRUTH_FIG, predictedNavState.pose(), 0.1)
|
plotPose3(POSES_FIG, predictedNavState.pose(), 0.1)
|
||||||
|
|
||||||
plt.ioff()
|
plt.ioff()
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
Loading…
Reference in New Issue