Merge pull request #931 from borglab/feature/arc_consistency
Re-factored arc consistencyrelease/4.3a0
commit
ac49f0f2d8
|
|
@ -57,21 +57,25 @@ DecisionTreeFactor AllDiff::operator*(const DecisionTreeFactor& f) const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool AllDiff::ensureArcConsistency(size_t j,
|
||||
std::vector<Domain>& domains) const {
|
||||
bool AllDiff::ensureArcConsistency(Key j, Domains* domains) const {
|
||||
Domain& Dj = domains->at(j);
|
||||
|
||||
// Though strictly not part of allDiff, we check for
|
||||
// a value in domains[j] that does not occur in any other connected domain.
|
||||
// a value in domains->at(j) that does not occur in any other connected domain.
|
||||
// If found, we make this a singleton...
|
||||
// TODO: make a new constraint where this really is true
|
||||
Domain& Dj = domains[j];
|
||||
if (Dj.checkAllDiff(keys_, domains)) return true;
|
||||
boost::optional<Domain> maybeChanged = Dj.checkAllDiff(keys_, *domains);
|
||||
if (maybeChanged) {
|
||||
Dj = *maybeChanged;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Check all other domains for singletons and erase corresponding values
|
||||
// Check all other domains for singletons and erase corresponding values.
|
||||
// This is the same as arc-consistency on the equivalent binary constraints
|
||||
bool changed = false;
|
||||
for (Key k : keys_)
|
||||
if (k != j) {
|
||||
const Domain& Dk = domains[k];
|
||||
const Domain& Dk = domains->at(k);
|
||||
if (Dk.isSingleton()) { // check if singleton
|
||||
size_t value = Dk.firstValue();
|
||||
if (Dj.contains(value)) {
|
||||
|
|
@ -96,10 +100,10 @@ Constraint::shared_ptr AllDiff::partiallyApply(const Values& values) const {
|
|||
|
||||
/* ************************************************************************* */
|
||||
Constraint::shared_ptr AllDiff::partiallyApply(
|
||||
const std::vector<Domain>& domains) const {
|
||||
const Domains& domains) const {
|
||||
DiscreteFactor::Values known;
|
||||
for (Key k : keys_) {
|
||||
const Domain& Dk = domains[k];
|
||||
const Domain& Dk = domains.at(k);
|
||||
if (Dk.isSingleton()) known[k] = Dk.firstValue();
|
||||
}
|
||||
return partiallyApply(known);
|
||||
|
|
|
|||
|
|
@ -13,11 +13,8 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* General AllDiff constraint
|
||||
* Returns 1 if values for all keys are different, 0 otherwise
|
||||
* DiscreteFactors are all awkward in that they have to store two types of keys:
|
||||
* for each variable we have a Key and an Key. In this factor, we
|
||||
* keep the Indices locally, and the Indices are stored in IndexFactor.
|
||||
* General AllDiff constraint.
|
||||
* Returns 1 if values for all keys are different, 0 otherwise.
|
||||
*/
|
||||
class GTSAM_UNSTABLE_EXPORT AllDiff : public Constraint {
|
||||
std::map<Key, size_t> cardinalities_;
|
||||
|
|
@ -28,7 +25,7 @@ class GTSAM_UNSTABLE_EXPORT AllDiff : public Constraint {
|
|||
}
|
||||
|
||||
public:
|
||||
/// Constructor
|
||||
/// Construct from keys.
|
||||
AllDiff(const DiscreteKeys& dkeys);
|
||||
|
||||
// print
|
||||
|
|
@ -57,21 +54,19 @@ class GTSAM_UNSTABLE_EXPORT AllDiff : public Constraint {
|
|||
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
|
||||
|
||||
/*
|
||||
* Ensure Arc-consistency
|
||||
* Arc-consistency involves creating binaryAllDiff constraints
|
||||
* In which case the combinatorial hyper-arc explosion disappears.
|
||||
* Ensure Arc-consistency by checking every possible value of domain j.
|
||||
* @param j domain to be checked
|
||||
* @param domains all other domains
|
||||
* @param (in/out) domains all domains, but only domains->at(j) will be checked.
|
||||
* @return true if domains->at(j) was changed, false otherwise.
|
||||
*/
|
||||
bool ensureArcConsistency(size_t j,
|
||||
std::vector<Domain>& domains) const override;
|
||||
bool ensureArcConsistency(Key j, Domains* domains) const override;
|
||||
|
||||
/// Partially apply known values
|
||||
Constraint::shared_ptr partiallyApply(const Values&) const override;
|
||||
|
||||
/// Partially apply known values, domain version
|
||||
Constraint::shared_ptr partiallyApply(
|
||||
const std::vector<Domain>&) const override;
|
||||
const Domains&) const override;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -15,10 +15,7 @@ namespace gtsam {
|
|||
|
||||
/**
|
||||
* Binary AllDiff constraint
|
||||
* Returns 1 if values for two keys are different, 0 otherwise
|
||||
* DiscreteFactors are all awkward in that they have to store two types of keys:
|
||||
* for each variable we have a Index and an Index. In this factor, we
|
||||
* keep the Indices locally, and the Indices are stored in IndexFactor.
|
||||
* Returns 1 if values for two keys are different, 0 otherwise.
|
||||
*/
|
||||
class BinaryAllDiff : public Constraint {
|
||||
size_t cardinality0_, cardinality1_; /// cardinality
|
||||
|
|
@ -73,14 +70,14 @@ class BinaryAllDiff : public Constraint {
|
|||
}
|
||||
|
||||
/*
|
||||
* Ensure Arc-consistency
|
||||
* Ensure Arc-consistency by checking every possible value of domain j.
|
||||
* @param j domain to be checked
|
||||
* @param domains all other domains
|
||||
* @param (in/out) domains all domains, but only domains->at(j) will be checked.
|
||||
* @return true if domains->at(j) was changed, false otherwise.
|
||||
*/
|
||||
bool ensureArcConsistency(size_t j,
|
||||
std::vector<Domain>& domains) const override {
|
||||
// throw std::runtime_error(
|
||||
// "BinaryAllDiff::ensureArcConsistency not implemented");
|
||||
bool ensureArcConsistency(Key j, Domains* domains) const override {
|
||||
throw std::runtime_error(
|
||||
"BinaryAllDiff::ensureArcConsistency not implemented");
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
@ -91,7 +88,7 @@ class BinaryAllDiff : public Constraint {
|
|||
|
||||
/// Partially apply known values, domain version
|
||||
Constraint::shared_ptr partiallyApply(
|
||||
const std::vector<Domain>&) const override {
|
||||
const Domains&) const override {
|
||||
throw std::runtime_error("BinaryAllDiff::partiallyApply not implemented");
|
||||
}
|
||||
};
|
||||
|
|
|
|||
|
|
@ -25,82 +25,75 @@ CSP::Values CSP::optimalAssignment(const Ordering& ordering) const {
|
|||
return chordal->optimize();
|
||||
}
|
||||
|
||||
void CSP::runArcConsistency(size_t cardinality, size_t nrIterations,
|
||||
bool print) const {
|
||||
bool CSP::runArcConsistency(const VariableIndex& index,
|
||||
Domains* domains) const {
|
||||
bool changed = false;
|
||||
|
||||
// iterate over all variables in the index
|
||||
for (auto entry : index) {
|
||||
// Get the variable's key and associated factors:
|
||||
const Key key = entry.first;
|
||||
const FactorIndices& factors = entry.second;
|
||||
|
||||
// If this domain is already a singleton, we do nothing.
|
||||
if (domains->at(key).isSingleton()) continue;
|
||||
|
||||
// Otherwise, loop over all factors/constraints for variable with given key.
|
||||
for (size_t f : factors) {
|
||||
// If this factor is a constraint, call its ensureArcConsistency method:
|
||||
auto constraint = boost::dynamic_pointer_cast<Constraint>((*this)[f]);
|
||||
if (constraint) {
|
||||
changed = constraint->ensureArcConsistency(key, domains) || changed;
|
||||
}
|
||||
}
|
||||
}
|
||||
return changed;
|
||||
}
|
||||
|
||||
// TODO(dellaert): This is AC1, which is inefficient as any change will cause
|
||||
// the algorithm to revisit *all* variables again. Implement AC3.
|
||||
Domains CSP::runArcConsistency(size_t cardinality, size_t maxIterations) const {
|
||||
// Create VariableIndex
|
||||
VariableIndex index(*this);
|
||||
// index.print();
|
||||
|
||||
size_t n = index.size();
|
||||
|
||||
// Initialize domains
|
||||
std::vector<Domain> domains;
|
||||
for (size_t j = 0; j < n; j++)
|
||||
domains.push_back(Domain(DiscreteKey(j, cardinality)));
|
||||
Domains domains;
|
||||
for (auto entry : index) {
|
||||
const Key key = entry.first;
|
||||
domains.emplace(key, DiscreteKey(key, cardinality));
|
||||
}
|
||||
|
||||
// Create array of flags indicating a domain changed or not
|
||||
std::vector<bool> changed(n);
|
||||
// Iterate until convergence or not a single domain changed.
|
||||
for (size_t it = 0; it < maxIterations; it++) {
|
||||
bool changed = runArcConsistency(index, &domains);
|
||||
if (!changed) break;
|
||||
}
|
||||
return domains;
|
||||
}
|
||||
|
||||
// iterate nrIterations over entire grid
|
||||
for (size_t it = 0; it < nrIterations; it++) {
|
||||
bool anyChange = false;
|
||||
// iterate over all cells
|
||||
for (size_t v = 0; v < n; v++) {
|
||||
// keep track of which domains changed
|
||||
changed[v] = false;
|
||||
// loop over all factors/constraints for variable v
|
||||
const FactorIndices& factors = index[v];
|
||||
for (size_t f : factors) {
|
||||
// if not already a singleton
|
||||
if (!domains[v].isSingleton()) {
|
||||
// get the constraint and call its ensureArcConsistency method
|
||||
Constraint::shared_ptr constraint =
|
||||
boost::dynamic_pointer_cast<Constraint>((*this)[f]);
|
||||
if (!constraint)
|
||||
throw runtime_error("CSP:runArcConsistency: non-constraint factor");
|
||||
changed[v] =
|
||||
constraint->ensureArcConsistency(v, domains) || changed[v];
|
||||
}
|
||||
} // f
|
||||
if (changed[v]) anyChange = true;
|
||||
} // v
|
||||
if (!anyChange) break;
|
||||
// TODO: Sudoku specific hack
|
||||
if (print) {
|
||||
if (cardinality == 9 && n == 81) {
|
||||
for (size_t i = 0, v = 0; i < (size_t)std::sqrt((double)n); i++) {
|
||||
for (size_t j = 0; j < (size_t)std::sqrt((double)n); j++, v++) {
|
||||
if (changed[v]) cout << "*";
|
||||
domains[v].print();
|
||||
cout << "\t";
|
||||
} // i
|
||||
cout << endl;
|
||||
} // j
|
||||
} else {
|
||||
for (size_t v = 0; v < n; v++) {
|
||||
if (changed[v]) cout << "*";
|
||||
domains[v].print();
|
||||
cout << "\t";
|
||||
} // v
|
||||
}
|
||||
cout << endl;
|
||||
} // print
|
||||
} // it
|
||||
|
||||
#ifndef INPROGRESS
|
||||
// Now create new problem with all singleton variables removed
|
||||
// We do this by adding simplifying all factors using parial application
|
||||
CSP CSP::partiallyApply(const Domains& domains) const {
|
||||
// Create new problem with all singleton variables removed
|
||||
// We do this by adding simplifying all factors using partial application.
|
||||
// TODO: create a new ordering as we go, to ensure a connected graph
|
||||
// KeyOrdering ordering;
|
||||
// vector<Index> dkeys;
|
||||
CSP new_csp;
|
||||
|
||||
// Add tightened domains as new factors:
|
||||
for (auto key_domain : domains) {
|
||||
new_csp.emplace_shared<Domain>(key_domain.second);
|
||||
}
|
||||
|
||||
// Reduce all existing factors:
|
||||
for (const DiscreteFactor::shared_ptr& f : factors_) {
|
||||
Constraint::shared_ptr constraint =
|
||||
boost::dynamic_pointer_cast<Constraint>(f);
|
||||
auto constraint = boost::dynamic_pointer_cast<Constraint>(f);
|
||||
if (!constraint)
|
||||
throw runtime_error("CSP:runArcConsistency: non-constraint factor");
|
||||
Constraint::shared_ptr reduced = constraint->partiallyApply(domains);
|
||||
if (print) reduced->print();
|
||||
if (reduced->size() > 1) {
|
||||
new_csp.push_back(reduced);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return new_csp;
|
||||
}
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -61,7 +61,7 @@ class GTSAM_UNSTABLE_EXPORT CSP : public DiscreteFactorGraph {
|
|||
// deep.
|
||||
// * It will be very expensive to exclude values that way.
|
||||
// */
|
||||
// void applyBeliefPropagation(size_t nrIterations = 10) const;
|
||||
// void applyBeliefPropagation(size_t maxIterations = 10) const;
|
||||
|
||||
/*
|
||||
* Apply arc-consistency ~ Approximate loopy belief propagation
|
||||
|
|
@ -69,8 +69,16 @@ class GTSAM_UNSTABLE_EXPORT CSP : public DiscreteFactorGraph {
|
|||
* a domain whose values don't conflict in the arc-consistency way.
|
||||
* TODO: should get cardinality from DiscreteKeys
|
||||
*/
|
||||
void runArcConsistency(size_t cardinality, size_t nrIterations = 10,
|
||||
bool print = false) const;
|
||||
Domains runArcConsistency(size_t cardinality,
|
||||
size_t maxIterations = 10) const;
|
||||
|
||||
/// Run arc consistency for all variables, return true if any domain changed.
|
||||
bool runArcConsistency(const VariableIndex& index, Domains* domains) const;
|
||||
|
||||
/*
|
||||
* Create a new CSP, applying the given Domain constraints.
|
||||
*/
|
||||
CSP partiallyApply(const Domains& domains) const;
|
||||
}; // CSP
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -21,30 +21,32 @@
|
|||
#include <gtsam_unstable/dllexport.h>
|
||||
|
||||
#include <boost/assign.hpp>
|
||||
#include <map>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
class Domain;
|
||||
using Domains = std::map<Key, Domain>;
|
||||
|
||||
/**
|
||||
* Base class for discrete probabilistic factors
|
||||
* The most general one is the derived DecisionTreeFactor
|
||||
* Base class for constraint factors
|
||||
* Derived classes include SingleValue, BinaryAllDiff, and AllDiff.
|
||||
*/
|
||||
class Constraint : public DiscreteFactor {
|
||||
class GTSAM_EXPORT Constraint : public DiscreteFactor {
|
||||
public:
|
||||
typedef boost::shared_ptr<Constraint> shared_ptr;
|
||||
|
||||
protected:
|
||||
/// Construct n-way factor
|
||||
Constraint(const KeyVector& js) : DiscreteFactor(js) {}
|
||||
|
||||
/// Construct unary factor
|
||||
/// Construct unary constraint factor.
|
||||
Constraint(Key j) : DiscreteFactor(boost::assign::cref_list_of<1>(j)) {}
|
||||
|
||||
/// Construct binary factor
|
||||
/// Construct binary constraint factor.
|
||||
Constraint(Key j1, Key j2)
|
||||
: DiscreteFactor(boost::assign::cref_list_of<2>(j1)(j2)) {}
|
||||
|
||||
/// Construct n-way constraint factor.
|
||||
Constraint(const KeyVector& js) : DiscreteFactor(js) {}
|
||||
|
||||
/// construct from container
|
||||
template <class KeyIterator>
|
||||
Constraint(KeyIterator beginKey, KeyIterator endKey)
|
||||
|
|
@ -65,18 +67,18 @@ class Constraint : public DiscreteFactor {
|
|||
/// @{
|
||||
|
||||
/*
|
||||
* Ensure Arc-consistency
|
||||
* Ensure Arc-consistency by checking every possible value of domain j.
|
||||
* @param j domain to be checked
|
||||
* @param domains all other domains
|
||||
* @param (in/out) domains all domains, but only domains->at(j) will be checked.
|
||||
* @return true if domains->at(j) was changed, false otherwise.
|
||||
*/
|
||||
virtual bool ensureArcConsistency(size_t j,
|
||||
std::vector<Domain>& domains) const = 0;
|
||||
virtual bool ensureArcConsistency(Key j, Domains* domains) const = 0;
|
||||
|
||||
/// Partially apply known values
|
||||
virtual shared_ptr partiallyApply(const Values&) const = 0;
|
||||
|
||||
/// Partially apply known values, domain version
|
||||
virtual shared_ptr partiallyApply(const std::vector<Domain>&) const = 0;
|
||||
virtual shared_ptr partiallyApply(const Domains&) const = 0;
|
||||
/// @}
|
||||
};
|
||||
// DiscreteFactor
|
||||
|
|
|
|||
|
|
@ -10,29 +10,35 @@
|
|||
#include <gtsam_unstable/discrete/Domain.h>
|
||||
|
||||
#include <boost/make_shared.hpp>
|
||||
|
||||
#include <sstream>
|
||||
namespace gtsam {
|
||||
|
||||
using namespace std;
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Domain::print(const string& s, const KeyFormatter& formatter) const {
|
||||
// cout << s << ": Domain on " << formatter(keys_[0]) << " (j=" <<
|
||||
// formatter(keys_[0]) << ") with values";
|
||||
// for (size_t v: values_) cout << " " << v;
|
||||
// cout << endl;
|
||||
for (size_t v : values_) cout << v;
|
||||
cout << s << ": Domain on " << formatter(key()) << " (j=" << formatter(key())
|
||||
<< ") with values";
|
||||
for (size_t v : values_) cout << " " << v;
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
string Domain::base1Str() const {
|
||||
stringstream ss;
|
||||
for (size_t v : values_) ss << v + 1;
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
double Domain::operator()(const Values& values) const {
|
||||
return contains(values.at(keys_[0]));
|
||||
return contains(values.at(key()));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
DecisionTreeFactor Domain::toDecisionTreeFactor() const {
|
||||
DiscreteKeys keys;
|
||||
keys += DiscreteKey(keys_[0], cardinality_);
|
||||
keys += DiscreteKey(key(), cardinality_);
|
||||
vector<double> table;
|
||||
for (size_t i1 = 0; i1 < cardinality_; ++i1) table.push_back(contains(i1));
|
||||
DecisionTreeFactor converted(keys, table);
|
||||
|
|
@ -46,9 +52,9 @@ DecisionTreeFactor Domain::operator*(const DecisionTreeFactor& f) const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool Domain::ensureArcConsistency(size_t j, vector<Domain>& domains) const {
|
||||
if (j != keys_[0]) throw invalid_argument("Domain check on wrong domain");
|
||||
Domain& D = domains[j];
|
||||
bool Domain::ensureArcConsistency(Key j, Domains* domains) const {
|
||||
if (j != key()) throw invalid_argument("Domain check on wrong domain");
|
||||
Domain& D = domains->at(j);
|
||||
for (size_t value : values_)
|
||||
if (!D.contains(value)) throw runtime_error("Unsatisfiable");
|
||||
D = *this;
|
||||
|
|
@ -56,34 +62,33 @@ bool Domain::ensureArcConsistency(size_t j, vector<Domain>& domains) const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool Domain::checkAllDiff(const KeyVector keys, vector<Domain>& domains) {
|
||||
Key j = keys_[0];
|
||||
boost::optional<Domain> Domain::checkAllDiff(const KeyVector keys,
|
||||
const Domains& domains) const {
|
||||
Key j = key();
|
||||
// for all values in this domain
|
||||
for (size_t value : values_) {
|
||||
for (const size_t value : values_) {
|
||||
// for all connected domains
|
||||
for (Key k : keys)
|
||||
for (const Key k : keys)
|
||||
// if any domain contains the value we cannot make this domain singleton
|
||||
if (k != j && domains[k].contains(value)) goto found;
|
||||
values_.clear();
|
||||
values_.insert(value);
|
||||
return true; // we changed it
|
||||
if (k != j && domains.at(k).contains(value)) goto found;
|
||||
// Otherwise: return a singleton:
|
||||
return Domain(this->discreteKey(), value);
|
||||
found:;
|
||||
}
|
||||
return false; // we did not change it
|
||||
return boost::none; // we did not change it
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Constraint::shared_ptr Domain::partiallyApply(const Values& values) const {
|
||||
Values::const_iterator it = values.find(keys_[0]);
|
||||
Values::const_iterator it = values.find(key());
|
||||
if (it != values.end() && !contains(it->second))
|
||||
throw runtime_error("Domain::partiallyApply: unsatisfiable");
|
||||
return boost::make_shared<Domain>(*this);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Constraint::shared_ptr Domain::partiallyApply(
|
||||
const vector<Domain>& domains) const {
|
||||
const Domain& Dk = domains[keys_[0]];
|
||||
Constraint::shared_ptr Domain::partiallyApply(const Domains& domains) const {
|
||||
const Domain& Dk = domains.at(key());
|
||||
if (Dk.isSingleton() && !contains(*Dk.begin()))
|
||||
throw runtime_error("Domain::partiallyApply: unsatisfiable");
|
||||
return boost::make_shared<Domain>(Dk);
|
||||
|
|
|
|||
|
|
@ -13,7 +13,8 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Domain restriction constraint
|
||||
* The Domain class represents a constraint that restricts the possible values a
|
||||
* particular variable, with given key, can take on.
|
||||
*/
|
||||
class GTSAM_UNSTABLE_EXPORT Domain : public Constraint {
|
||||
size_t cardinality_; /// Cardinality
|
||||
|
|
@ -35,14 +36,16 @@ class GTSAM_UNSTABLE_EXPORT Domain : public Constraint {
|
|||
values_.insert(v);
|
||||
}
|
||||
|
||||
/// Constructor
|
||||
Domain(const Domain& other)
|
||||
: Constraint(other.keys_[0]), values_(other.values_) {}
|
||||
/// The one key
|
||||
Key key() const { return keys_[0]; }
|
||||
|
||||
/// insert a value, non const :-(
|
||||
// The associated discrete key
|
||||
DiscreteKey discreteKey() const { return DiscreteKey(key(), cardinality_); }
|
||||
|
||||
/// Insert a value, non const :-(
|
||||
void insert(size_t value) { values_.insert(value); }
|
||||
|
||||
/// erase a value, non const :-(
|
||||
/// Erase a value, non const :-(
|
||||
void erase(size_t value) { values_.erase(value); }
|
||||
|
||||
size_t nrValues() const { return values_.size(); }
|
||||
|
|
@ -65,6 +68,11 @@ class GTSAM_UNSTABLE_EXPORT Domain : public Constraint {
|
|||
}
|
||||
}
|
||||
|
||||
// Return concise string representation, mostly to debug arc consistency.
|
||||
// Converts from base 0 to base1.
|
||||
std::string base1Str() const;
|
||||
|
||||
// Check whether domain cotains a specific value.
|
||||
bool contains(size_t value) const { return values_.count(value) > 0; }
|
||||
|
||||
/// Calculate value
|
||||
|
|
@ -77,27 +85,29 @@ class GTSAM_UNSTABLE_EXPORT Domain : public Constraint {
|
|||
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
|
||||
|
||||
/*
|
||||
* Ensure Arc-consistency
|
||||
* Ensure Arc-consistency by checking every possible value of domain j.
|
||||
* @param j domain to be checked
|
||||
* @param domains all other domains
|
||||
* @param (in/out) domains all domains, but only domains->at(j) will be
|
||||
* checked.
|
||||
* @return true if domains->at(j) was changed, false otherwise.
|
||||
*/
|
||||
bool ensureArcConsistency(size_t j,
|
||||
std::vector<Domain>& domains) const override;
|
||||
bool ensureArcConsistency(Key j, Domains* domains) const override;
|
||||
|
||||
/**
|
||||
* Check for a value in domain that does not occur in any other connected
|
||||
* domain. If found, we make this a singleton... Called in
|
||||
* AllDiff::ensureArcConsistency
|
||||
* @param keys connected domains through alldiff
|
||||
* Check for a value in domain that does not occur in any other connected
|
||||
* domain. If found, return a a new singleton domain...
|
||||
* Called in AllDiff::ensureArcConsistency
|
||||
* @param keys connected domains through alldiff
|
||||
* @param keys other domains
|
||||
*/
|
||||
bool checkAllDiff(const KeyVector keys, std::vector<Domain>& domains);
|
||||
boost::optional<Domain> checkAllDiff(const KeyVector keys,
|
||||
const Domains& domains) const;
|
||||
|
||||
/// Partially apply known values
|
||||
Constraint::shared_ptr partiallyApply(const Values& values) const override;
|
||||
|
||||
/// Partially apply known values, domain version
|
||||
Constraint::shared_ptr partiallyApply(
|
||||
const std::vector<Domain>& domains) const override;
|
||||
Constraint::shared_ptr partiallyApply(const Domains& domains) const override;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -44,11 +44,10 @@ DecisionTreeFactor SingleValue::operator*(const DecisionTreeFactor& f) const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool SingleValue::ensureArcConsistency(size_t j,
|
||||
vector<Domain>& domains) const {
|
||||
bool SingleValue::ensureArcConsistency(Key j, Domains* domains) const {
|
||||
if (j != keys_[0])
|
||||
throw invalid_argument("SingleValue check on wrong domain");
|
||||
Domain& D = domains[j];
|
||||
Domain& D = domains->at(j);
|
||||
if (D.isSingleton()) {
|
||||
if (D.firstValue() != value_) throw runtime_error("Unsatisfiable");
|
||||
return false;
|
||||
|
|
@ -67,8 +66,8 @@ Constraint::shared_ptr SingleValue::partiallyApply(const Values& values) const {
|
|||
|
||||
/* ************************************************************************* */
|
||||
Constraint::shared_ptr SingleValue::partiallyApply(
|
||||
const vector<Domain>& domains) const {
|
||||
const Domain& Dk = domains[keys_[0]];
|
||||
const Domains& domains) const {
|
||||
const Domain& Dk = domains.at(keys_[0]);
|
||||
if (Dk.isSingleton() && !Dk.contains(value_))
|
||||
throw runtime_error("SingleValue::partiallyApply: unsatisfiable");
|
||||
return boost::make_shared<SingleValue>(discreteKey(), value_);
|
||||
|
|
|
|||
|
|
@ -13,14 +13,12 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* SingleValue constraint
|
||||
* SingleValue constraint: ensures a variable takes on a certain value.
|
||||
* This could of course also be implemented by changing its `Domain`.
|
||||
*/
|
||||
class GTSAM_UNSTABLE_EXPORT SingleValue : public Constraint {
|
||||
/// Number of values
|
||||
size_t cardinality_;
|
||||
|
||||
/// allowed value
|
||||
size_t value_;
|
||||
size_t cardinality_; /// < Number of values
|
||||
size_t value_; ///< allowed value
|
||||
|
||||
DiscreteKey discreteKey() const {
|
||||
return DiscreteKey(keys_[0], cardinality_);
|
||||
|
|
@ -29,11 +27,11 @@ class GTSAM_UNSTABLE_EXPORT SingleValue : public Constraint {
|
|||
public:
|
||||
typedef boost::shared_ptr<SingleValue> shared_ptr;
|
||||
|
||||
/// Constructor
|
||||
/// Construct from key, cardinality, and given value.
|
||||
SingleValue(Key key, size_t n, size_t value)
|
||||
: Constraint(key), cardinality_(n), value_(value) {}
|
||||
|
||||
/// Constructor
|
||||
/// Construct from DiscreteKey and given value.
|
||||
SingleValue(const DiscreteKey& dkey, size_t value)
|
||||
: Constraint(dkey.first), cardinality_(dkey.second), value_(value) {}
|
||||
|
||||
|
|
@ -61,19 +59,19 @@ class GTSAM_UNSTABLE_EXPORT SingleValue : public Constraint {
|
|||
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override;
|
||||
|
||||
/*
|
||||
* Ensure Arc-consistency
|
||||
* Ensure Arc-consistency: just sets domain[j] to {value_}.
|
||||
* @param j domain to be checked
|
||||
* @param domains all other domains
|
||||
* @param (in/out) domains all domains, but only domains->at(j) will be checked.
|
||||
* @return true if domains->at(j) was changed, false otherwise.
|
||||
*/
|
||||
bool ensureArcConsistency(size_t j,
|
||||
std::vector<Domain>& domains) const override;
|
||||
bool ensureArcConsistency(Key j, Domains* domains) const override;
|
||||
|
||||
/// Partially apply known values
|
||||
Constraint::shared_ptr partiallyApply(const Values& values) const override;
|
||||
|
||||
/// Partially apply known values, domain version
|
||||
Constraint::shared_ptr partiallyApply(
|
||||
const std::vector<Domain>& domains) const override;
|
||||
const Domains& domains) const override;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -19,12 +19,34 @@ using namespace std;
|
|||
using namespace gtsam;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST_UNSAFE(BinaryAllDif, allInOne) {
|
||||
// Create keys and ordering
|
||||
TEST(CSP, SingleValue) {
|
||||
// Create keys for Idaho, Arizona, and Utah, allowing two colors for each:
|
||||
size_t nrColors = 3;
|
||||
DiscreteKey ID(0, nrColors), AZ(1, nrColors), UT(2, nrColors);
|
||||
|
||||
// Check that a single value is equal to a decision stump with only one "1":
|
||||
SingleValue singleValue(AZ, 2);
|
||||
DecisionTreeFactor f1(AZ, "0 0 1");
|
||||
EXPECT(assert_equal(f1, singleValue.toDecisionTreeFactor()));
|
||||
|
||||
// Create domains
|
||||
Domains domains;
|
||||
domains.emplace(0, Domain(ID));
|
||||
domains.emplace(1, Domain(AZ));
|
||||
domains.emplace(2, Domain(UT));
|
||||
|
||||
// Ensure arc-consistency: just wipes out values in AZ domain:
|
||||
EXPECT(singleValue.ensureArcConsistency(1, &domains));
|
||||
LONGS_EQUAL(3, domains.at(0).nrValues());
|
||||
LONGS_EQUAL(1, domains.at(1).nrValues());
|
||||
LONGS_EQUAL(3, domains.at(2).nrValues());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(CSP, BinaryAllDif) {
|
||||
// Create keys for Idaho, Arizona, and Utah, allowing 2 colors for each:
|
||||
size_t nrColors = 2;
|
||||
// DiscreteKey ID("Idaho", nrColors), UT("Utah", nrColors), AZ("Arizona",
|
||||
// nrColors);
|
||||
DiscreteKey ID(0, nrColors), UT(2, nrColors), AZ(1, nrColors);
|
||||
DiscreteKey ID(0, nrColors), AZ(1, nrColors), UT(2, nrColors);
|
||||
|
||||
// Check construction and conversion
|
||||
BinaryAllDiff c1(ID, UT);
|
||||
|
|
@ -36,16 +58,53 @@ TEST_UNSAFE(BinaryAllDif, allInOne) {
|
|||
DecisionTreeFactor f2(UT & AZ, "0 1 1 0");
|
||||
EXPECT(assert_equal(f2, c2.toDecisionTreeFactor()));
|
||||
|
||||
// Check multiplication of factors with constraint:
|
||||
DecisionTreeFactor f3 = f1 * f2;
|
||||
EXPECT(assert_equal(f3, c1 * f2));
|
||||
EXPECT(assert_equal(f3, c2 * f1));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST_UNSAFE(CSP, allInOne) {
|
||||
// Create keys and ordering
|
||||
TEST(CSP, AllDiff) {
|
||||
// Create keys for Idaho, Arizona, and Utah, allowing two colors for each:
|
||||
size_t nrColors = 3;
|
||||
DiscreteKey ID(0, nrColors), AZ(1, nrColors), UT(2, nrColors);
|
||||
|
||||
// Check construction and conversion
|
||||
vector<DiscreteKey> dkeys{ID, UT, AZ};
|
||||
AllDiff alldiff(dkeys);
|
||||
DecisionTreeFactor actual = alldiff.toDecisionTreeFactor();
|
||||
// GTSAM_PRINT(actual);
|
||||
actual.dot("actual");
|
||||
DecisionTreeFactor f2(
|
||||
ID & AZ & UT,
|
||||
"0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0");
|
||||
EXPECT(assert_equal(f2, actual));
|
||||
|
||||
// Create domains.
|
||||
Domains domains;
|
||||
domains.emplace(0, Domain(ID));
|
||||
domains.emplace(1, Domain(AZ));
|
||||
domains.emplace(2, Domain(UT));
|
||||
|
||||
// First constrict AZ domain:
|
||||
SingleValue singleValue(AZ, 2);
|
||||
EXPECT(singleValue.ensureArcConsistency(1, &domains));
|
||||
|
||||
// Arc-consistency
|
||||
EXPECT(alldiff.ensureArcConsistency(0, &domains));
|
||||
EXPECT(!alldiff.ensureArcConsistency(1, &domains));
|
||||
EXPECT(alldiff.ensureArcConsistency(2, &domains));
|
||||
LONGS_EQUAL(2, domains.at(0).nrValues());
|
||||
LONGS_EQUAL(1, domains.at(1).nrValues());
|
||||
LONGS_EQUAL(2, domains.at(2).nrValues());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(CSP, allInOne) {
|
||||
// Create keys for Idaho, Arizona, and Utah, allowing 3 colors for each:
|
||||
size_t nrColors = 2;
|
||||
DiscreteKey ID(0, nrColors), UT(2, nrColors), AZ(1, nrColors);
|
||||
DiscreteKey ID(0, nrColors), AZ(1, nrColors), UT(2, nrColors);
|
||||
|
||||
// Create the CSP
|
||||
CSP csp;
|
||||
|
|
@ -81,15 +140,12 @@ TEST_UNSAFE(CSP, allInOne) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST_UNSAFE(CSP, WesternUS) {
|
||||
// Create keys
|
||||
TEST(CSP, WesternUS) {
|
||||
// Create keys for all states in Western US, with 4 color possibilities.
|
||||
size_t nrColors = 4;
|
||||
DiscreteKey
|
||||
// Create ordering according to example in ND-CSP.lyx
|
||||
WA(0, nrColors),
|
||||
OR(3, nrColors), CA(1, nrColors), NV(2, nrColors), ID(8, nrColors),
|
||||
UT(9, nrColors), AZ(10, nrColors), MT(4, nrColors), WY(5, nrColors),
|
||||
CO(7, nrColors), NM(6, nrColors);
|
||||
DiscreteKey WA(0, nrColors), OR(3, nrColors), CA(1, nrColors),
|
||||
NV(2, nrColors), ID(8, nrColors), UT(9, nrColors), AZ(10, nrColors),
|
||||
MT(4, nrColors), WY(5, nrColors), CO(7, nrColors), NM(6, nrColors);
|
||||
|
||||
// Create the CSP
|
||||
CSP csp;
|
||||
|
|
@ -116,10 +172,11 @@ TEST_UNSAFE(CSP, WesternUS) {
|
|||
csp.addAllDiff(WY, CO);
|
||||
csp.addAllDiff(CO, NM);
|
||||
|
||||
// Solve
|
||||
// Create ordering according to example in ND-CSP.lyx
|
||||
Ordering ordering;
|
||||
ordering += Key(0), Key(1), Key(2), Key(3), Key(4), Key(5), Key(6), Key(7),
|
||||
Key(8), Key(9), Key(10);
|
||||
// Solve using that ordering:
|
||||
auto mpe = csp.optimalAssignment(ordering);
|
||||
// GTSAM_PRINT(mpe);
|
||||
CSP::Values expected;
|
||||
|
|
@ -143,33 +200,17 @@ TEST_UNSAFE(CSP, WesternUS) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST_UNSAFE(CSP, AllDiff) {
|
||||
// Create keys and ordering
|
||||
TEST(CSP, ArcConsistency) {
|
||||
// Create keys for Idaho, Arizona, and Utah, allowing three colors for each:
|
||||
size_t nrColors = 3;
|
||||
DiscreteKey ID(0, nrColors), UT(2, nrColors), AZ(1, nrColors);
|
||||
DiscreteKey ID(0, nrColors), AZ(1, nrColors), UT(2, nrColors);
|
||||
|
||||
// Create the CSP
|
||||
// Create the CSP using just one all-diff constraint, plus constrain Arizona.
|
||||
CSP csp;
|
||||
vector<DiscreteKey> dkeys;
|
||||
dkeys += ID, UT, AZ;
|
||||
vector<DiscreteKey> dkeys{ID, UT, AZ};
|
||||
csp.addAllDiff(dkeys);
|
||||
csp.addSingleValue(AZ, 2);
|
||||
// GTSAM_PRINT(csp);
|
||||
|
||||
// Check construction and conversion
|
||||
SingleValue s(AZ, 2);
|
||||
DecisionTreeFactor f1(AZ, "0 0 1");
|
||||
EXPECT(assert_equal(f1, s.toDecisionTreeFactor()));
|
||||
|
||||
// Check construction and conversion
|
||||
AllDiff alldiff(dkeys);
|
||||
DecisionTreeFactor actual = alldiff.toDecisionTreeFactor();
|
||||
// GTSAM_PRINT(actual);
|
||||
// actual.dot("actual");
|
||||
DecisionTreeFactor f2(
|
||||
ID & AZ & UT,
|
||||
"0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0");
|
||||
EXPECT(assert_equal(f2, actual));
|
||||
// GTSAM_PRINT(csp);
|
||||
|
||||
// Check an invalid combination, with ID==UT==AZ all same color
|
||||
DiscreteFactor::Values invalid;
|
||||
|
|
@ -192,17 +233,21 @@ TEST_UNSAFE(CSP, AllDiff) {
|
|||
EXPECT(assert_equal(expected, mpe));
|
||||
EXPECT_DOUBLES_EQUAL(1, csp(mpe), 1e-9);
|
||||
|
||||
// Arc-consistency
|
||||
vector<Domain> domains;
|
||||
domains += Domain(ID), Domain(AZ), Domain(UT);
|
||||
// ensure arc-consistency, i.e., narrow domains...
|
||||
Domains domains;
|
||||
domains.emplace(0, Domain(ID));
|
||||
domains.emplace(1, Domain(AZ));
|
||||
domains.emplace(2, Domain(UT));
|
||||
|
||||
SingleValue singleValue(AZ, 2);
|
||||
EXPECT(singleValue.ensureArcConsistency(1, domains));
|
||||
EXPECT(alldiff.ensureArcConsistency(0, domains));
|
||||
EXPECT(!alldiff.ensureArcConsistency(1, domains));
|
||||
EXPECT(alldiff.ensureArcConsistency(2, domains));
|
||||
LONGS_EQUAL(2, domains[0].nrValues());
|
||||
LONGS_EQUAL(1, domains[1].nrValues());
|
||||
LONGS_EQUAL(2, domains[2].nrValues());
|
||||
AllDiff alldiff(dkeys);
|
||||
EXPECT(singleValue.ensureArcConsistency(1, &domains));
|
||||
EXPECT(alldiff.ensureArcConsistency(0, &domains));
|
||||
EXPECT(!alldiff.ensureArcConsistency(1, &domains));
|
||||
EXPECT(alldiff.ensureArcConsistency(2, &domains));
|
||||
LONGS_EQUAL(2, domains.at(0).nrValues());
|
||||
LONGS_EQUAL(1, domains.at(1).nrValues());
|
||||
LONGS_EQUAL(2, domains.at(2).nrValues());
|
||||
|
||||
// Parial application, version 1
|
||||
DiscreteFactor::Values known;
|
||||
|
|
@ -222,6 +267,7 @@ TEST_UNSAFE(CSP, AllDiff) {
|
|||
|
||||
// full arc-consistency test
|
||||
csp.runArcConsistency(nrColors);
|
||||
// GTSAM_PRINT(csp);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@
|
|||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam_unstable/discrete/CSP.h>
|
||||
|
||||
#include <boost/assign/std/map.hpp>
|
||||
|
|
@ -20,12 +21,12 @@ using namespace gtsam;
|
|||
|
||||
#define PRINT false
|
||||
|
||||
/// A class that encodes Sudoku's as a CSP problem
|
||||
class Sudoku : public CSP {
|
||||
/// sudoku size
|
||||
size_t n_;
|
||||
size_t n_; ///< Side of Sudoku, e.g. 4 or 9
|
||||
|
||||
/// discrete keys
|
||||
typedef std::pair<size_t, size_t> IJ;
|
||||
/// Mapping from base i,j coordinates to discrete keys:
|
||||
using IJ = std::pair<size_t, size_t>;
|
||||
std::map<IJ, DiscreteKey> dkeys_;
|
||||
|
||||
public:
|
||||
|
|
@ -42,15 +43,14 @@ class Sudoku : public CSP {
|
|||
// Create variables, ordering, and unary constraints
|
||||
va_list ap;
|
||||
va_start(ap, n);
|
||||
Key k = 0;
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
for (size_t j = 0; j < n; ++j, ++k) {
|
||||
for (size_t j = 0; j < n; ++j) {
|
||||
// create the key
|
||||
IJ ij(i, j);
|
||||
dkeys_[ij] = DiscreteKey(k, n);
|
||||
Symbol key('1' + i, j + 1);
|
||||
dkeys_[ij] = DiscreteKey(key, n);
|
||||
// get the unary constraint, if any
|
||||
int value = va_arg(ap, int);
|
||||
// cout << value << " ";
|
||||
if (value != 0) addSingleValue(dkeys_[ij], value - 1);
|
||||
}
|
||||
// cout << endl;
|
||||
|
|
@ -99,23 +99,32 @@ class Sudoku : public CSP {
|
|||
}
|
||||
|
||||
/// solve and print solution
|
||||
void printSolution() {
|
||||
void printSolution() const {
|
||||
auto MPE = optimalAssignment();
|
||||
printAssignment(MPE);
|
||||
}
|
||||
|
||||
// Print domain
|
||||
void printDomains(const Domains& domains) {
|
||||
for (size_t i = 0; i < n_; i++) {
|
||||
for (size_t j = 0; j < n_; j++) {
|
||||
Key k = key(i, j);
|
||||
cout << domains.at(k).base1Str();
|
||||
cout << "\t";
|
||||
} // i
|
||||
cout << endl;
|
||||
} // j
|
||||
}
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST_UNSAFE(Sudoku, small) {
|
||||
TEST(Sudoku, small) {
|
||||
Sudoku csp(4, //
|
||||
1, 0, 0, 4, //
|
||||
0, 0, 0, 0, //
|
||||
4, 0, 2, 0, //
|
||||
0, 1, 0, 0);
|
||||
|
||||
// Do BP
|
||||
csp.runArcConsistency(4, 10, PRINT);
|
||||
|
||||
// optimize and check
|
||||
auto solution = csp.optimalAssignment();
|
||||
CSP::Values expected;
|
||||
|
|
@ -126,73 +135,124 @@ TEST_UNSAFE(Sudoku, small) {
|
|||
csp.key(3, 3), 2);
|
||||
EXPECT(assert_equal(expected, solution));
|
||||
// csp.printAssignment(solution);
|
||||
|
||||
// Do BP (AC1)
|
||||
auto domains = csp.runArcConsistency(4, 3);
|
||||
// csp.printDomains(domains);
|
||||
Domain domain44 = domains.at(Symbol('4', 4));
|
||||
EXPECT_LONGS_EQUAL(1, domain44.nrValues());
|
||||
|
||||
// Test Creation of a new, simpler CSP
|
||||
CSP new_csp = csp.partiallyApply(domains);
|
||||
// Should only be 16 new Domains
|
||||
EXPECT_LONGS_EQUAL(16, new_csp.size());
|
||||
|
||||
// Check that solution
|
||||
auto new_solution = new_csp.optimalAssignment();
|
||||
// csp.printAssignment(new_solution);
|
||||
EXPECT(assert_equal(expected, new_solution));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST_UNSAFE(Sudoku, easy) {
|
||||
Sudoku sudoku(9, //
|
||||
0, 0, 5, 0, 9, 0, 0, 0, 1, //
|
||||
0, 0, 0, 0, 0, 2, 0, 7, 3, //
|
||||
7, 6, 0, 0, 0, 8, 2, 0, 0, //
|
||||
TEST(Sudoku, easy) {
|
||||
Sudoku csp(9, //
|
||||
0, 0, 5, 0, 9, 0, 0, 0, 1, //
|
||||
0, 0, 0, 0, 0, 2, 0, 7, 3, //
|
||||
7, 6, 0, 0, 0, 8, 2, 0, 0, //
|
||||
|
||||
0, 1, 2, 0, 0, 9, 0, 0, 4, //
|
||||
0, 0, 0, 2, 0, 3, 0, 0, 0, //
|
||||
3, 0, 0, 1, 0, 0, 9, 6, 0, //
|
||||
0, 1, 2, 0, 0, 9, 0, 0, 4, //
|
||||
0, 0, 0, 2, 0, 3, 0, 0, 0, //
|
||||
3, 0, 0, 1, 0, 0, 9, 6, 0, //
|
||||
|
||||
0, 0, 1, 9, 0, 0, 0, 5, 8, //
|
||||
9, 7, 0, 5, 0, 0, 0, 0, 0, //
|
||||
5, 0, 0, 0, 3, 0, 7, 0, 0);
|
||||
0, 0, 1, 9, 0, 0, 0, 5, 8, //
|
||||
9, 7, 0, 5, 0, 0, 0, 0, 0, //
|
||||
5, 0, 0, 0, 3, 0, 7, 0, 0);
|
||||
|
||||
// Do BP
|
||||
sudoku.runArcConsistency(4, 10, PRINT);
|
||||
// csp.printSolution(); // don't do it
|
||||
|
||||
// sudoku.printSolution(); // don't do it
|
||||
// Do BP (AC1)
|
||||
auto domains = csp.runArcConsistency(9, 10);
|
||||
// csp.printDomains(domains);
|
||||
Key key99 = Symbol('9', 9);
|
||||
Domain domain99 = domains.at(key99);
|
||||
EXPECT_LONGS_EQUAL(1, domain99.nrValues());
|
||||
|
||||
// Test Creation of a new, simpler CSP
|
||||
CSP new_csp = csp.partiallyApply(domains);
|
||||
// 81 new Domains, and still 26 all-diff constraints
|
||||
EXPECT_LONGS_EQUAL(81 + 26, new_csp.size());
|
||||
|
||||
// csp.printSolution(); // still don't do it ! :-(
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST_UNSAFE(Sudoku, extreme) {
|
||||
Sudoku sudoku(9, //
|
||||
0, 0, 9, 7, 4, 8, 0, 0, 0, 7, //
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, //
|
||||
0, 1, 0, 9, 0, 0, 0, 0, 0, 7, //
|
||||
0, 0, 0, 2, 4, 0, 0, 6, 4, 0, //
|
||||
1, 0, 5, 9, 0, 0, 9, 8, 0, 0, //
|
||||
0, 3, 0, 0, 0, 0, 0, 8, 0, 3, //
|
||||
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, //
|
||||
0, 6, 0, 0, 0, 2, 7, 5, 9, 0, 0);
|
||||
TEST(Sudoku, extreme) {
|
||||
Sudoku csp(9, //
|
||||
0, 0, 9, 7, 4, 8, 0, 0, 0, 7, //
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, //
|
||||
0, 1, 0, 9, 0, 0, 0, 0, 0, 7, //
|
||||
0, 0, 0, 2, 4, 0, 0, 6, 4, 0, //
|
||||
1, 0, 5, 9, 0, 0, 9, 8, 0, 0, //
|
||||
0, 3, 0, 0, 0, 0, 0, 8, 0, 3, //
|
||||
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, //
|
||||
0, 6, 0, 0, 0, 2, 7, 5, 9, 0, 0);
|
||||
|
||||
// Do BP
|
||||
sudoku.runArcConsistency(9, 10, PRINT);
|
||||
csp.runArcConsistency(9, 10);
|
||||
|
||||
#ifdef METIS
|
||||
VariableIndexOrdered index(sudoku);
|
||||
VariableIndexOrdered index(csp);
|
||||
index.print("index");
|
||||
ofstream os("/Users/dellaert/src/hmetis-1.5-osx-i686/extreme-dual.txt");
|
||||
index.outputMetisFormat(os);
|
||||
#endif
|
||||
|
||||
// sudoku.printSolution(); // don't do it
|
||||
// Do BP (AC1)
|
||||
auto domains = csp.runArcConsistency(9, 10);
|
||||
// csp.printDomains(domains);
|
||||
Key key99 = Symbol('9', 9);
|
||||
Domain domain99 = domains.at(key99);
|
||||
EXPECT_LONGS_EQUAL(2, domain99.nrValues());
|
||||
|
||||
// Test Creation of a new, simpler CSP
|
||||
CSP new_csp = csp.partiallyApply(domains);
|
||||
// 81 new Domains, and still 20 all-diff constraints
|
||||
EXPECT_LONGS_EQUAL(81 + 20, new_csp.size());
|
||||
|
||||
// csp.printSolution(); // still don't do it ! :-(
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST_UNSAFE(Sudoku, AJC_3star_Feb8_2012) {
|
||||
Sudoku sudoku(9, //
|
||||
9, 5, 0, 0, 0, 6, 0, 0, 0, //
|
||||
0, 8, 4, 0, 7, 0, 0, 0, 0, //
|
||||
6, 2, 0, 5, 0, 0, 4, 0, 0, //
|
||||
TEST(Sudoku, AJC_3star_Feb8_2012) {
|
||||
Sudoku csp(9, //
|
||||
9, 5, 0, 0, 0, 6, 0, 0, 0, //
|
||||
0, 8, 4, 0, 7, 0, 0, 0, 0, //
|
||||
6, 2, 0, 5, 0, 0, 4, 0, 0, //
|
||||
|
||||
0, 0, 0, 2, 9, 0, 6, 0, 0, //
|
||||
0, 9, 0, 0, 0, 0, 0, 2, 0, //
|
||||
0, 0, 2, 0, 6, 3, 0, 0, 0, //
|
||||
0, 0, 0, 2, 9, 0, 6, 0, 0, //
|
||||
0, 9, 0, 0, 0, 0, 0, 2, 0, //
|
||||
0, 0, 2, 0, 6, 3, 0, 0, 0, //
|
||||
|
||||
0, 0, 9, 0, 0, 7, 0, 6, 8, //
|
||||
0, 0, 0, 0, 3, 0, 2, 9, 0, //
|
||||
0, 0, 0, 1, 0, 0, 0, 3, 7);
|
||||
0, 0, 9, 0, 0, 7, 0, 6, 8, //
|
||||
0, 0, 0, 0, 3, 0, 2, 9, 0, //
|
||||
0, 0, 0, 1, 0, 0, 0, 3, 7);
|
||||
|
||||
// Do BP
|
||||
sudoku.runArcConsistency(9, 10, PRINT);
|
||||
// Do BP (AC1)
|
||||
auto domains = csp.runArcConsistency(9, 10);
|
||||
// csp.printDomains(domains);
|
||||
Key key99 = Symbol('9', 9);
|
||||
Domain domain99 = domains.at(key99);
|
||||
EXPECT_LONGS_EQUAL(1, domain99.nrValues());
|
||||
|
||||
// sudoku.printSolution(); // don't do it
|
||||
// Test Creation of a new, simpler CSP
|
||||
CSP new_csp = csp.partiallyApply(domains);
|
||||
// Just the 81 new Domains
|
||||
EXPECT_LONGS_EQUAL(81, new_csp.size());
|
||||
|
||||
// Check that solution
|
||||
auto solution = new_csp.optimalAssignment();
|
||||
// csp.printAssignment(solution);
|
||||
EXPECT_LONGS_EQUAL(6, solution.at(key99));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
Loading…
Reference in New Issue