diff --git a/doc/gtsam-coordinate-frames.lyx b/doc/gtsam-coordinate-frames.lyx index 33d0dd977..cfb44696b 100644 --- a/doc/gtsam-coordinate-frames.lyx +++ b/doc/gtsam-coordinate-frames.lyx @@ -2291,15 +2291,11 @@ uncalibration used in the residual). \end_layout -\begin_layout Standard -\begin_inset Note Note -status collapsed - \begin_layout Section Noise models of prior factors \end_layout -\begin_layout Plain Layout +\begin_layout Standard The simplest way to describe noise models is by an example. Let's take a prior factor on a 3D pose \begin_inset Formula $x\in\SE 3$ @@ -2353,7 +2349,7 @@ e\left(x\right)=\norm{h\left(x\right)}_{\Sigma}^{2}=h\left(x\right)^{\t}\Sigma^{ useful answer out quickly ] \end_layout -\begin_layout Plain Layout +\begin_layout Standard The density induced by a noise model on the prior factor is Gaussian in the tangent space about the linearization point. Suppose that the pose is linearized at @@ -2431,7 +2427,7 @@ Here we see that the update . \end_layout -\begin_layout Plain Layout +\begin_layout Standard This means that to draw random pose samples, we actually draw random samples of \begin_inset Formula $\delta x$ @@ -2456,7 +2452,7 @@ This means that to draw random pose samples, we actually draw random samples Noise models of between factors \end_layout -\begin_layout Plain Layout +\begin_layout Standard The noise model of a BetweenFactor is a bit more complicated. The unwhitened error is \begin_inset Formula @@ -2516,11 +2512,6 @@ e\left(\delta x_{1}\right) & \approx\norm{\log\left(z^{-1}\left(x_{1}\exp\delta \end_inset -\end_layout - -\end_inset - - \end_layout \end_body diff --git a/doc/gtsam-coordinate-frames.pdf b/doc/gtsam-coordinate-frames.pdf index 3613ef0ac..77910b4cf 100644 Binary files a/doc/gtsam-coordinate-frames.pdf and b/doc/gtsam-coordinate-frames.pdf differ