Checking mixture invariants, WIP

release/4.3a0
Frank Dellaert 2023-01-14 10:23:21 -08:00
parent 693d18233a
commit ab439bfbb0
5 changed files with 119 additions and 8 deletions

View File

@ -298,9 +298,14 @@ double GaussianMixture::error(const HybridValues &values) const {
/* *******************************************************************************/
double GaussianMixture::logProbability(const HybridValues &values) const {
// Directly index to get the conditional, no need to build the whole tree.
auto conditional = conditionals_(values.discrete());
return conditional->logProbability(values.continuous());
}
/* *******************************************************************************/
double GaussianMixture::evaluate(const HybridValues &values) const {
auto conditional = conditionals_(values.discrete());
return conditional->evaluate(values.continuous());
}
} // namespace gtsam

View File

@ -191,12 +191,13 @@ class GTSAM_EXPORT GaussianMixture
*/
double logProbability(const HybridValues &values) const override;
// /// Calculate probability density for given values `x`.
// double evaluate(const HybridValues &values) const;
/// Calculate probability density for given `values`.
double evaluate(const HybridValues &values) const override;
// /// Evaluate probability density, sugar.
// double operator()(const HybridValues &values) const { return
// evaluate(values); }
/// Evaluate probability density, sugar.
double operator()(const HybridValues &values) const {
return evaluate(values);
}
/**
* @brief Prune the decision tree of Gaussian factors as per the discrete

View File

@ -151,4 +151,24 @@ double HybridConditional::logProbability(const HybridValues &values) const {
"HybridConditional::logProbability: conditional type not handled");
}
/* ************************************************************************ */
double HybridConditional::logNormalizationConstant() const {
if (auto gc = asGaussian()) {
return gc->logNormalizationConstant();
}
if (auto gm = asMixture()) {
return gm->logNormalizationConstant(); // 0.0!
}
if (auto dc = asDiscrete()) {
return dc->logNormalizationConstant(); // 0.0!
}
throw std::runtime_error(
"HybridConditional::logProbability: conditional type not handled");
}
/* ************************************************************************ */
double HybridConditional::evaluate(const HybridValues &values) const {
return std::exp(logProbability(values));
}
} // namespace gtsam

View File

@ -179,9 +179,19 @@ class GTSAM_EXPORT HybridConditional
/// Return the error of the underlying conditional.
double error(const HybridValues& values) const override;
/// Return the logProbability of the underlying conditional.
/// Return the log-probability (or density) of the underlying conditional.
double logProbability(const HybridValues& values) const override;
/**
* Return the log normalization constant.
* Note this is 0.0 for discrete and hybrid conditionals, but depends
* on the continuous parameters for Gaussian conditionals.
*/
double logNormalizationConstant() const override;
/// Return the probability (or density) of the underlying conditional.
double evaluate(const HybridValues& values) const override;
/// Check if VectorValues `measurements` contains all frontal keys.
bool frontalsIn(const VectorValues& measurements) const {
for (Key key : frontals()) {

View File

@ -0,0 +1,75 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testHybridConditional.cpp
* @brief Unit tests for HybridConditional class
* @date January 2023
*/
#include <gtsam/hybrid/HybridConditional.h>
#include "TinyHybridExample.h"
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace gtsam;
using symbol_shorthand::M;
using symbol_shorthand::X;
using symbol_shorthand::Z;
/* ****************************************************************************/
// Check invariants for all conditionals in a tiny Bayes net.
TEST(HybridConditional, Invariants) {
// Create hybrid Bayes net p(z|x,m)p(x)P(m)
auto bn = tiny::createHybridBayesNet();
// Create values to check invariants.
const VectorValues c{{X(0), Vector1(5.1)}, {Z(0), Vector1(4.9)}};
const DiscreteValues d{{M(0), 1}};
const HybridValues values{c, d};
// Check invariants for p(z|x,m)
auto hc1 = bn.at(0);
CHECK(hc1->isHybrid());
GTSAM_PRINT(*hc1);
// Check invariants as a GaussianMixture.
const auto mixture = hc1->asMixture();
double probability = mixture->evaluate(values);
CHECK(probability >= 0.0);
EXPECT_DOUBLES_EQUAL(probability, (*mixture)(values), 1e-9);
double logProb = mixture->logProbability(values);
EXPECT_DOUBLES_EQUAL(probability, std::exp(logProb), 1e-9);
double expected =
mixture->logNormalizationConstant() - mixture->error(values);
EXPECT_DOUBLES_EQUAL(logProb, expected, 1e-9);
EXPECT(GaussianMixture::CheckInvariants(*mixture, values));
// Check invariants as a HybridConditional.
probability = hc1->evaluate(values);
CHECK(probability >= 0.0);
EXPECT_DOUBLES_EQUAL(probability, (*hc1)(values), 1e-9);
logProb = hc1->logProbability(values);
EXPECT_DOUBLES_EQUAL(probability, std::exp(logProb), 1e-9);
expected = hc1->logNormalizationConstant() - hc1->error(values);
EXPECT_DOUBLES_EQUAL(logProb, expected, 1e-9);
EXPECT(HybridConditional::CheckInvariants(*hc1, values));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */