Resurrected tests
parent
6d938ce5cc
commit
aaf2ff5689
|
@ -15,26 +15,27 @@
|
|||
* @author Yong-Dian Jian
|
||||
**/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#if 0
|
||||
|
||||
#include <tests/smallExample.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
#include <gtsam/linear/iterative.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/SubgraphSolver.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/inference/Ordering.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <boost/tuple/tuple.hpp>
|
||||
#include <boost/assign/std/list.hpp>
|
||||
using namespace boost::assign;
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace example;
|
||||
|
||||
static size_t N = 3;
|
||||
static SubgraphSolverParameters kParameters;
|
||||
static auto kOrdering = example::planarOrdering(N);
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** unnormalized error */
|
||||
|
@ -45,20 +46,17 @@ static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
|
|||
return total_error;
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SubgraphSolver, constructor1 )
|
||||
{
|
||||
// Build a planar graph
|
||||
GaussianFactorGraph Ab;
|
||||
VectorValues xtrue;
|
||||
size_t N = 3;
|
||||
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
||||
boost::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
|
||||
|
||||
// The first constructor just takes a factor graph (and parameters)
|
||||
// The first constructor just takes a factor graph (and kParameters)
|
||||
// and it will split the graph into A1 and A2, where A1 is a spanning tree
|
||||
SubgraphSolverParameters parameters;
|
||||
SubgraphSolver solver(Ab, parameters);
|
||||
SubgraphSolver solver(Ab, kParameters, kOrdering);
|
||||
VectorValues optimized = solver.optimize(); // does PCG optimization
|
||||
DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
|
||||
}
|
||||
|
@ -70,16 +68,15 @@ TEST( SubgraphSolver, constructor2 )
|
|||
GaussianFactorGraph Ab;
|
||||
VectorValues xtrue;
|
||||
size_t N = 3;
|
||||
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
||||
boost::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
|
||||
|
||||
// Get the spanning tree and corresponding ordering
|
||||
// Get the spanning tree
|
||||
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
||||
boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
|
||||
boost::tie(Ab1_, Ab2_) = example::splitOffPlanarTree(N, Ab);
|
||||
|
||||
// The second constructor takes two factor graphs,
|
||||
// so the caller can specify the preconditioner (Ab1) and the constraints that are left out (Ab2)
|
||||
SubgraphSolverParameters parameters;
|
||||
SubgraphSolver solver(Ab1_, Ab2_, parameters);
|
||||
// The second constructor takes two factor graphs, so the caller can specify
|
||||
// the preconditioner (Ab1) and the constraints that are left out (Ab2)
|
||||
SubgraphSolver solver(Ab1_, Ab2_, kParameters, kOrdering);
|
||||
VectorValues optimized = solver.optimize();
|
||||
DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
|
||||
}
|
||||
|
@ -91,26 +88,22 @@ TEST( SubgraphSolver, constructor3 )
|
|||
GaussianFactorGraph Ab;
|
||||
VectorValues xtrue;
|
||||
size_t N = 3;
|
||||
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
|
||||
boost::tie(Ab, xtrue) = example::planarGraph(N); // A*x-b
|
||||
|
||||
// Get the spanning tree and corresponding ordering
|
||||
// Get the spanning tree and corresponding kOrdering
|
||||
GaussianFactorGraph Ab1_, Ab2_; // A1*x-b1 and A2*x-b2
|
||||
boost::tie(Ab1_, Ab2_) = splitOffPlanarTree(N, Ab);
|
||||
boost::tie(Ab1_, Ab2_) = example::splitOffPlanarTree(N, Ab);
|
||||
|
||||
// The caller solves |A1*x-b1|^2 == |R1*x-c1|^2 via QR factorization, where R1 is square UT
|
||||
GaussianBayesNet::shared_ptr Rc1 = //
|
||||
EliminationTree<GaussianFactor>::Create(Ab1_)->eliminate(&EliminateQR);
|
||||
// The caller solves |A1*x-b1|^2 == |R1*x-c1|^2, where R1 is square UT
|
||||
auto Rc1 = Ab1_.eliminateSequential();
|
||||
|
||||
// The third constructor allows the caller to pass an already solved preconditioner Rc1_
|
||||
// as a Bayes net, in addition to the "loop closing constraints" Ab2, as before
|
||||
SubgraphSolverParameters parameters;
|
||||
SubgraphSolver solver(Rc1, Ab2_, parameters);
|
||||
SubgraphSolver solver(Rc1, Ab2_, kParameters);
|
||||
VectorValues optimized = solver.optimize();
|
||||
DOUBLES_EQUAL(0.0, error(Ab, optimized), 1e-5);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue