fix: correct some inappropriate floating point error, and its test
parent
6895b75ecd
commit
aa1e5962c9
|
@ -148,12 +148,11 @@ Unit3 Unit3::retract(const Vector2& v) const {
|
|||
|
||||
// Compute the 3D xi_hat vector
|
||||
Vector3 xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
|
||||
|
||||
double xi_hat_norm = xi_hat.norm();
|
||||
|
||||
// Avoid nan
|
||||
if (xi_hat_norm == 0.0) {
|
||||
if (v.norm() == 0.0)
|
||||
if (xi_hat_norm < 1e-16) {
|
||||
if (v.norm() < 1e-16)
|
||||
return Unit3(point3());
|
||||
else
|
||||
return Unit3(-point3());
|
||||
|
@ -162,13 +161,12 @@ Unit3 Unit3::retract(const Vector2& v) const {
|
|||
Vector3 exp_p_xi_hat = cos(xi_hat_norm) * p
|
||||
+ sin(xi_hat_norm) * (xi_hat / xi_hat_norm);
|
||||
return Unit3(exp_p_xi_hat);
|
||||
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector2 Unit3::localCoordinates(const Unit3& y) const {
|
||||
|
||||
Vector3 p = p_.vector(), q = y.p_.vector();
|
||||
Vector3 p = p_.vector(), q = y.unitVector();
|
||||
double dot = p.dot(q);
|
||||
|
||||
// Check for special cases
|
||||
|
|
|
@ -66,7 +66,7 @@ TEST(Unit3, rotate) {
|
|||
Unit3 actual = R * p;
|
||||
EXPECT(assert_equal(expected, actual, 1e-8));
|
||||
Matrix actualH, expectedH;
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
|
||||
{
|
||||
expectedH = numericalDerivative21(rotate_, R, p);
|
||||
R.rotate(p, actualH, boost::none);
|
||||
|
@ -90,8 +90,8 @@ TEST(Unit3, unrotate) {
|
|||
Unit3 expected = Unit3(1, 1, 0);
|
||||
Unit3 actual = R.unrotate(p);
|
||||
EXPECT(assert_equal(expected, actual, 1e-8));
|
||||
|
||||
Matrix actualH, expectedH;
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
{
|
||||
expectedH = numericalDerivative21(unrotate_, R, p);
|
||||
R.unrotate(p, actualH, boost::none);
|
||||
|
@ -113,7 +113,6 @@ TEST(Unit3, error) {
|
|||
EXPECT(assert_equal((Vector)(Vector2(0.717356, 0)), p.error(r), 1e-5));
|
||||
|
||||
Matrix actual, expected;
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
{
|
||||
expected = numericalDerivative11<Vector2,Unit3>(
|
||||
boost::bind(&Unit3::error, &p, _1, boost::none), q);
|
||||
|
@ -153,31 +152,29 @@ TEST(Unit3, distance) {
|
|||
}
|
||||
|
||||
//*******************************************************************************
|
||||
TEST(Unit3, localCoordinates0) {
|
||||
TEST(Unit3, localCoordinates) {
|
||||
{
|
||||
Unit3 p;
|
||||
Vector actual = p.localCoordinates(p);
|
||||
Vector2 actual = p.localCoordinates(p);
|
||||
EXPECT(assert_equal(zero(2), actual, 1e-8));
|
||||
}
|
||||
|
||||
//*******************************************************************************
|
||||
TEST(Unit3, localCoordinates1) {
|
||||
{
|
||||
Unit3 p, q(1, 6.12385e-21, 0);
|
||||
Vector actual = p.localCoordinates(q);
|
||||
Vector2 actual = p.localCoordinates(q);
|
||||
CHECK(assert_equal(zero(2), actual, 1e-8));
|
||||
}
|
||||
|
||||
//*******************************************************************************
|
||||
TEST(Unit3, localCoordinates2) {
|
||||
{
|
||||
Unit3 p, q(-1, 0, 0);
|
||||
Vector expected = (Vector(2) << M_PI, 0).finished();
|
||||
Vector actual = p.localCoordinates(q);
|
||||
Vector2 expected(M_PI, 0);
|
||||
Vector2 actual = p.localCoordinates(q);
|
||||
CHECK(assert_equal(expected, actual, 1e-8));
|
||||
}
|
||||
}
|
||||
|
||||
//*******************************************************************************
|
||||
TEST(Unit3, basis) {
|
||||
Unit3 p;
|
||||
Matrix expected(3, 2);
|
||||
Matrix32 expected;
|
||||
expected << 0, 0, 0, -1, 1, 0;
|
||||
Matrix actual = p.basis();
|
||||
EXPECT(assert_equal(expected, actual, 1e-8));
|
||||
|
@ -185,20 +182,27 @@ TEST(Unit3, basis) {
|
|||
|
||||
//*******************************************************************************
|
||||
TEST(Unit3, retract) {
|
||||
{
|
||||
Unit3 p;
|
||||
Vector v(2);
|
||||
v << 0.5, 0;
|
||||
Vector2 v(0.5, 0);
|
||||
Unit3 expected(0.877583, 0, 0.479426);
|
||||
Unit3 actual = p.retract(v);
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
EXPECT(assert_equal(v, p.localCoordinates(actual), 1e-8));
|
||||
}
|
||||
{
|
||||
Unit3 p;
|
||||
Vector2 v(0, 0);
|
||||
Unit3 actual = p.retract(v);
|
||||
EXPECT(assert_equal(p, actual, 1e-6));
|
||||
EXPECT(assert_equal(v, p.localCoordinates(actual), 1e-8));
|
||||
}
|
||||
}
|
||||
|
||||
//*******************************************************************************
|
||||
TEST(Unit3, retract_expmap) {
|
||||
Unit3 p;
|
||||
Vector v(2);
|
||||
v << (M_PI / 2.0), 0;
|
||||
Vector2 v((M_PI / 2.0), 0);
|
||||
Unit3 expected(Point3(0, 0, 1));
|
||||
Unit3 actual = p.retract(v);
|
||||
EXPECT(assert_equal(expected, actual, 1e-8));
|
||||
|
@ -228,9 +232,11 @@ inline static Vector randomVector(const Vector& minLimits,
|
|||
TEST(Unit3, localCoordinates_retract) {
|
||||
|
||||
size_t numIterations = 10000;
|
||||
Vector minSphereLimit = Vector3(-1.0, -1.0, -1.0), maxSphereLimit =
|
||||
Vector3(1.0, 1.0, 1.0);
|
||||
Vector minXiLimit = Vector2(-1.0, -1.0), maxXiLimit = Vector2(1.0, 1.0);
|
||||
Vector3 minSphereLimit(-1.0, -1.0, -1.0);
|
||||
Vector3 maxSphereLimit(1.0, 1.0, 1.0);
|
||||
Vector2 minXiLimit(-1.0, -1.0);
|
||||
Vector2 maxXiLimit(1.0, 1.0);
|
||||
|
||||
for (size_t i = 0; i < numIterations; i++) {
|
||||
|
||||
// Sleep for the random number generator (TODO?: Better create all of them first).
|
||||
|
@ -246,9 +252,9 @@ TEST(Unit3, localCoordinates_retract) {
|
|||
|
||||
// Check if the local coordinates and retract return the same results.
|
||||
Vector actual_v12 = s1.localCoordinates(s2);
|
||||
EXPECT(assert_equal(v12, actual_v12, 1e-3));
|
||||
EXPECT(assert_equal(v12, actual_v12, 1e-6));
|
||||
Unit3 actual_s2 = s1.retract(actual_v12);
|
||||
EXPECT(assert_equal(s2, actual_s2, 1e-3));
|
||||
EXPECT(assert_equal(s2, actual_s2, 1e-6));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -258,30 +264,26 @@ TEST(Unit3, localCoordinates_retract) {
|
|||
TEST(Unit3, localCoordinates_retract_expmap) {
|
||||
|
||||
size_t numIterations = 10000;
|
||||
Vector minSphereLimit = Vector3(-1.0, -1.0, -1.0), maxSphereLimit =
|
||||
Vector3(1.0, 1.0, 1.0);
|
||||
Vector minXiLimit = (Vector(2) << -M_PI, -M_PI).finished(), maxXiLimit = (Vector(2) << M_PI, M_PI).finished();
|
||||
Vector3 minSphereLimit = Vector3(-1.0, -1.0, -1.0);
|
||||
Vector3 maxSphereLimit = Vector3(1.0, 1.0, 1.0);
|
||||
Vector2 minXiLimit = Vector2(-M_PI, -M_PI);
|
||||
Vector2 maxXiLimit = Vector2(M_PI, M_PI);
|
||||
|
||||
for (size_t i = 0; i < numIterations; i++) {
|
||||
|
||||
// Sleep for the random number generator (TODO?: Better create all of them first).
|
||||
// boost::this_thread::sleep(boost::posix_time::milliseconds(0));
|
||||
|
||||
// Create the two Unit3s.
|
||||
// Unlike the above case, we can use any two Unit3's.
|
||||
Unit3 s1(Point3(randomVector(minSphereLimit, maxSphereLimit)));
|
||||
// Unit3 s2 (Point3(randomVector(minSphereLimit, maxSphereLimit)));
|
||||
Vector v12 = randomVector(minXiLimit, maxXiLimit);
|
||||
Vector v = randomVector(minXiLimit, maxXiLimit);
|
||||
|
||||
// Magnitude of the rotation can be at most pi
|
||||
if (v12.norm() > M_PI)
|
||||
v12 = v12 / M_PI;
|
||||
Unit3 s2 = s1.retract(v12);
|
||||
if (v.norm() > M_PI)
|
||||
v = v / M_PI;
|
||||
Unit3 s2 = s1.retract(v);
|
||||
|
||||
// Check if the local coordinates and retract return the same results.
|
||||
Vector actual_v12 = s1.localCoordinates(s2);
|
||||
EXPECT(assert_equal(v12, actual_v12, 1e-3));
|
||||
Unit3 actual_s2 = s1.retract(actual_v12);
|
||||
EXPECT(assert_equal(s2, actual_s2, 1e-3));
|
||||
EXPECT(assert_equal(v, s1.localCoordinates(s1.retract(v)), 1e-6));
|
||||
EXPECT(assert_equal(s2, s1.retract(s1.localCoordinates(s2)), 1e-6));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue