Merge remote-tracking branch 'origin/develop' into feature/BAD
Conflicts: .cproject gtsam/geometry/Cal3DS2.cpp gtsam/geometry/Cal3DS2.h gtsam/geometry/Cal3Unified.h gtsam/navigation/CombinedImuFactor.h gtsam/navigation/ImuFactor.h gtsam/nonlinear/NonlinearFactor.h gtsam/slam/tests/testPoseRotationPrior.cpp Modified: testGaussMarkov1stOrderFactor.cpp, testPoseRotationPrior.cpprelease/4.3a0
commit
a94835a2e4
20
.cproject
20
.cproject
|
@ -848,18 +848,26 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testGaussianFactorGraph.run" path="build/gtsam/linear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<target name="testGaussMarkov1stOrderFactor.run" path="build/gtsam_unstable/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testGaussianFactorGraph.run</buildTarget>
|
||||
<buildTarget>testGaussMarkov1stOrderFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testGaussianBayesNet.run" path="build/gtsam/linear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<target name="testGaussianFactorGraph.run" path="build/gtsam/linear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testGaussianBayesNet.run</buildTarget>
|
||||
<buildTarget>testGaussianFactorGraphUnordered.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testGaussianBayesNetUnordered.run" path="build/gtsam/linear/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testGaussianBayesNetUnordered.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
|
@ -2830,10 +2838,10 @@
|
|||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
</target>
|
||||
<target name="testSmartProjectionPoseFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<target name="testImplicitSchurFactor.run" path="build/gtsam/slam/tests" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
|
||||
<buildCommand>make</buildCommand>
|
||||
<buildArguments>-j5</buildArguments>
|
||||
<buildTarget>testSmartProjectionPoseFactor.run</buildTarget>
|
||||
<buildTarget>testImplicitSchurFactor.run</buildTarget>
|
||||
<stopOnError>true</stopOnError>
|
||||
<useDefaultCommand>true</useDefaultCommand>
|
||||
<runAllBuilders>true</runAllBuilders>
|
||||
|
|
|
@ -4,3 +4,4 @@
|
|||
*.DS_Store
|
||||
/examples/Data/dubrovnik-3-7-pre-rewritten.txt
|
||||
/examples/Data/pose2example-rewritten.txt
|
||||
/examples/Data/pose3example-rewritten.txt
|
||||
|
|
|
@ -2,6 +2,12 @@
|
|||
project(GTSAM CXX C)
|
||||
cmake_minimum_required(VERSION 2.6)
|
||||
|
||||
# new feature to Cmake Version > 2.8.12
|
||||
# Mac ONLY. Define Relative Path on Mac OS
|
||||
if(NOT DEFINED CMAKE_MACOSX_RPATH)
|
||||
set(CMAKE_MACOSX_RPATH 0)
|
||||
endif()
|
||||
|
||||
# Set the version number for the library
|
||||
set (GTSAM_VERSION_MAJOR 3)
|
||||
set (GTSAM_VERSION_MINOR 1)
|
||||
|
|
|
@ -138,12 +138,15 @@ ELSE() # UNIX and macOS
|
|||
${MKL_ROOT_DIR}/lib/
|
||||
)
|
||||
|
||||
# MKL on Mac OS doesn't ship with GNU thread versions, only Intel versions (see above)
|
||||
IF(NOT APPLE)
|
||||
FIND_LIBRARY(MKL_GNUTHREAD_LIBRARY
|
||||
mkl_gnu_thread
|
||||
PATHS
|
||||
${MKL_ROOT_DIR}/lib/${MKL_ARCH_DIR}
|
||||
${MKL_ROOT_DIR}/lib/
|
||||
)
|
||||
ENDIF()
|
||||
|
||||
# Intel Libraries
|
||||
IF("${MKL_ARCH_DIR}" STREQUAL "32")
|
||||
|
@ -227,7 +230,12 @@ ELSE() # UNIX and macOS
|
|||
endforeach()
|
||||
endforeach()
|
||||
|
||||
IF(APPLE)
|
||||
SET(MKL_LIBRARIES ${MKL_LP_INTELTHREAD_LIBRARIES})
|
||||
ELSE()
|
||||
SET(MKL_LIBRARIES ${MKL_LP_GNUTHREAD_LIBRARIES})
|
||||
ENDIF()
|
||||
|
||||
MARK_AS_ADVANCED(MKL_CORE_LIBRARY MKL_LP_LIBRARY MKL_ILP_LIBRARY
|
||||
MKL_SEQUENTIAL_LIBRARY MKL_INTELTHREAD_LIBRARY MKL_GNUTHREAD_LIBRARY)
|
||||
ENDIF()
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
VERTEX_SE3:QUAT 0 0 0 0 0 0 0 1
|
||||
VERTEX_SE3:QUAT 1 1.00137 0.01539 0.004948 0.190253 0.283162 -0.392318 0.85423
|
||||
VERTEX_SE3:QUAT 2 1.9935 0.023275 0.003793 0.351729 0.597838 -0.584174 -0.421446
|
||||
VERTEX_SE3:QUAT 2 1.9935 0.023275 0.003793 -0.351729 -0.597838 0.584174 0.421446
|
||||
VERTEX_SE3:QUAT 3 2.00429 1.02431 0.018047 0.331798 -0.200659 0.919323 0.067024
|
||||
VERTEX_SE3:QUAT 4 0.999908 1.05507 0.020212 -0.035697 -0.46249 0.445933 0.765488
|
||||
EDGE_SE3:QUAT 0 1 1.00137 0.01539 0.004948 0.190253 0.283162 -0.392318 0.85423 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 1 2 0.523923 0.776654 0.326659 -0.311512 -0.656877 0.678505 -0.105373 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 1 2 0.523923 0.776654 0.326659 0.311512 0.656877 -0.678505 0.105373 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 2 3 0.910927 0.055169 -0.411761 0.595795 -0.561677 0.079353 0.568551 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 3 4 0.775288 0.228798 -0.596923 -0.592076 0.30338 -0.513225 0.542222 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 3 4 0.775288 0.228798 -0.596923 -0.592077 0.30338 -0.513226 0.542221 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 1 4 -0.577841 0.628016 -0.543592 -0.12525 -0.534379 0.769122 0.327419 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 3 0 -0.623267 0.086928 0.773222 0.104639 0.627755 0.766795 0.083672 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
|
|
|
@ -0,0 +1,11 @@
|
|||
VERTEX_SE3:QUAT 0 0.000000 0.000000 0.000000 0.0008187 0.0011723 0.0895466 0.9959816
|
||||
VERTEX_SE3:QUAT 1 0.000000 -0.000000 0.000000 0.0010673 0.0015636 0.1606931 0.9870026
|
||||
VERTEX_SE3:QUAT 2 -0.388822 0.632954 0.001223 0.0029920 0.0014066 0.0258235 0.9996610
|
||||
VERTEX_SE3:QUAT 3 -1.143204 0.050638 0.006026 -0.0012800 -0.0002767 -0.2850291 0.9585180
|
||||
VERTEX_SE3:QUAT 4 -0.512416 0.486441 0.005171 0.0002681 0.0023574 0.0171476 0.9998502
|
||||
EDGE_SE3:QUAT 1 2 1.000000 2.000000 0.000000 0.0000000 0.0000000 0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 2 3 -0.000000 1.000000 0.000000 0.0000000 0.0000000 0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 3 4 1.000000 1.000000 0.000000 0.0000000 0.0000000 0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 3 1 0.000001 2.000000 0.000000 0.0000000 0.0000000 1.0000000 0.0000002 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 1 4 -1.000000 1.000000 0.000000 0.0000000 0.0000000 -0.7071068 0.7071068 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
||||
EDGE_SE3:QUAT 0 1 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 1.0000000 100.000000 0.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 0.000000 100.000000 0.000000 0.000000 100.000000 0.000000 100.000000
|
|
@ -26,36 +26,72 @@
|
|||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// HOWTO: ./Pose2SLAMExample_g2o inputFile outputFile (maxIterations) (tukey/huber)
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("noisyToyGraph.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
string kernelType = "none";
|
||||
int maxIterations = 100; // default
|
||||
string g2oFile = findExampleDataFile("noisyToyGraph.txt"); // default
|
||||
|
||||
// Parse user's inputs
|
||||
if (argc > 1){
|
||||
g2oFile = argv[1]; // input dataset filename
|
||||
// outputFile = g2oFile = argv[2]; // done later
|
||||
}
|
||||
if (argc > 3){
|
||||
maxIterations = atoi(argv[3]); // user can specify either tukey or huber
|
||||
}
|
||||
if (argc > 4){
|
||||
kernelType = argv[4]; // user can specify either tukey or huber
|
||||
}
|
||||
|
||||
// reading file and creating factor graph
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile);
|
||||
bool is3D = false;
|
||||
if(kernelType.compare("none") == 0){
|
||||
boost::tie(graph, initial) = readG2o(g2oFile,is3D);
|
||||
}
|
||||
if(kernelType.compare("huber") == 0){
|
||||
std::cout << "Using robust kernel: huber " << std::endl;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile,is3D, KernelFunctionTypeHUBER);
|
||||
}
|
||||
if(kernelType.compare("tukey") == 0){
|
||||
std::cout << "Using robust kernel: tukey " << std::endl;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile,is3D, KernelFunctionTypeTUKEY);
|
||||
}
|
||||
|
||||
// Add prior on the pose having index (key) = 0
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
|
||||
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
|
||||
std::cout << "Adding prior on pose 0 " << std::endl;
|
||||
|
||||
GaussNewtonParams params;
|
||||
params.setVerbosity("TERMINATION");
|
||||
if (argc > 3) {
|
||||
params.maxIterations = maxIterations;
|
||||
std::cout << "User required to perform maximum " << params.maxIterations << " iterations "<< std::endl;
|
||||
}
|
||||
|
||||
std::cout << "Optimizing the factor graph" << std::endl;
|
||||
GaussNewtonOptimizer optimizer(graphWithPrior, *initial);
|
||||
GaussNewtonOptimizer optimizer(graphWithPrior, *initial, params);
|
||||
Values result = optimizer.optimize();
|
||||
std::cout << "Optimization complete" << std::endl;
|
||||
|
||||
std::cout << "initial error=" <<graph->error(*initial)<< std::endl;
|
||||
std::cout << "final error=" <<graph->error(result)<< std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
result.print("result");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, result, outputFile);
|
||||
NonlinearFactorGraph::shared_ptr graphNoKernel;
|
||||
Values::shared_ptr initial2;
|
||||
boost::tie(graphNoKernel, initial2) = readG2o(g2oFile);
|
||||
writeG2o(*graphNoKernel, result, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
|
|
|
@ -0,0 +1,89 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_changeKeys input.g2o rewritted.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
bool add = false;
|
||||
Key firstKey = 8646911284551352320;
|
||||
|
||||
std::cout << "Using reference key: " << firstKey << std::endl;
|
||||
if(add)
|
||||
std::cout << "adding key " << std::endl;
|
||||
else
|
||||
std::cout << "subtracting key " << std::endl;
|
||||
|
||||
|
||||
if (argc < 3) {
|
||||
std::cout << "Please provide output file to write " << std::endl;
|
||||
} else {
|
||||
const string inputFileRewritten = argv[2];
|
||||
std::cout << "Rewriting input to file: " << inputFileRewritten << std::endl;
|
||||
// Additional: rewrite input with simplified keys 0,1,...
|
||||
Values simpleInitial;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
Key key;
|
||||
if(add)
|
||||
key = key_value.key + firstKey;
|
||||
else
|
||||
key = key_value.key - firstKey;
|
||||
|
||||
simpleInitial.insert(key, initial->at(key_value.key));
|
||||
}
|
||||
NonlinearFactorGraph simpleGraph;
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, *graph) {
|
||||
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
|
||||
if (pose3Between){
|
||||
Key key1, key2;
|
||||
if(add){
|
||||
key1 = pose3Between->key1() + firstKey;
|
||||
key2 = pose3Between->key2() + firstKey;
|
||||
}else{
|
||||
key1 = pose3Between->key1() - firstKey;
|
||||
key2 = pose3Between->key2() - firstKey;
|
||||
}
|
||||
NonlinearFactor::shared_ptr simpleFactor(
|
||||
new BetweenFactor<Pose3>(key1, key2, pose3Between->measured(), pose3Between->get_noiseModel()));
|
||||
simpleGraph.add(simpleFactor);
|
||||
}
|
||||
}
|
||||
writeG2o(simpleGraph, simpleInitial, inputFileRewritten);
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,74 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_initializePose3 input.g2o output.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
// Add prior on the first key
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4));
|
||||
Key firstKey = 0;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
std::cout << "Adding prior to g2o file " << std::endl;
|
||||
firstKey = key_value.key;
|
||||
graphWithPrior.add(PriorFactor<Pose3>(firstKey, Pose3(), priorModel));
|
||||
break;
|
||||
}
|
||||
|
||||
std::cout << "Optimizing the factor graph" << std::endl;
|
||||
GaussNewtonParams params;
|
||||
params.setVerbosity("TERMINATION"); // this will show info about stopping conditions
|
||||
GaussNewtonOptimizer optimizer(graphWithPrior, *initial, params);
|
||||
Values result = optimizer.optimize();
|
||||
std::cout << "Optimization complete" << std::endl;
|
||||
|
||||
std::cout << "initial error=" <<graph->error(*initial)<< std::endl;
|
||||
std::cout << "final error=" <<graph->error(result)<< std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
result.print("result");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, result, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,68 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_initializePose3 input.g2o output.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/InitializePose3.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
// Add prior on the first key
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4));
|
||||
Key firstKey = 0;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
std::cout << "Adding prior to g2o file " << std::endl;
|
||||
firstKey = key_value.key;
|
||||
graphWithPrior.add(PriorFactor<Pose3>(firstKey, Pose3(), priorModel));
|
||||
break;
|
||||
}
|
||||
|
||||
std::cout << "Initializing Pose3 - chordal relaxation" << std::endl;
|
||||
Values initialization = InitializePose3::initialize(graphWithPrior);
|
||||
std::cout << "done!" << std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
initialization.print("initialization");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, initialization, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,72 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose3SLAMExample_initializePose3.cpp
|
||||
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||
* Syntax for the script is ./Pose3SLAMExample_initializePose3 input.g2o output.g2o
|
||||
* @date Aug 25, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/InitializePose3.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("pose3example.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
bool is3D = true;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile, is3D);
|
||||
|
||||
// Add prior on the first key
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4));
|
||||
Key firstKey = 0;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, *initial) {
|
||||
std::cout << "Adding prior to g2o file " << std::endl;
|
||||
firstKey = key_value.key;
|
||||
graphWithPrior.add(PriorFactor<Pose3>(firstKey, Pose3(), priorModel));
|
||||
break;
|
||||
}
|
||||
|
||||
std::cout << "Initializing Pose3 - Riemannian gradient" << std::endl;
|
||||
bool useGradient = true;
|
||||
Values initialization = InitializePose3::initialize(graphWithPrior, *initial, useGradient);
|
||||
std::cout << "done!" << std::endl;
|
||||
|
||||
std::cout << "initial error=" <<graph->error(*initial)<< std::endl;
|
||||
std::cout << "initialization error=" <<graph->error(initialization)<< std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
initialization.print("initialization");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, initialization, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -36,9 +36,9 @@ namespace gtsam {
|
|||
* Values can operate generically on Value objects, retracting or computing
|
||||
* local coordinates for many Value objects of different types.
|
||||
*
|
||||
* Inhereting from the DerivedValue class templated provides a generic implementation of
|
||||
* Inheriting from the DerivedValue class templated provides a generic implementation of
|
||||
* the pure virtual functions retract_(), localCoordinates_(), and equals_(), eliminating
|
||||
* the need to implement these functions in your class. Note that you must inheret from
|
||||
* the need to implement these functions in your class. Note that you must inherit from
|
||||
* DerivedValue templated on the class you are defining. For example you cannot define
|
||||
* the following
|
||||
* \code
|
||||
|
|
|
@ -23,24 +23,9 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
Cal3DS2::Cal3DS2(const Vector &v):
|
||||
fx_(v[0]), fy_(v[1]), s_(v[2]), u0_(v[3]), v0_(v[4]), k1_(v[5]), k2_(v[6]), p1_(v[7]), p2_(v[8]){}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2::K() const {
|
||||
return (Matrix(3, 3) << fx_, s_, u0_, 0.0, fy_, v0_, 0.0, 0.0, 1.0);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Cal3DS2::vector() const {
|
||||
return (Vector(9) << fx_, fy_, s_, u0_, v0_, k1_, k2_, p1_, p2_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Cal3DS2::print(const std::string& s_) const {
|
||||
gtsam::print(K(), s_ + ".K");
|
||||
gtsam::print(Vector(k()), s_ + ".k");
|
||||
Base::print(s_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -52,135 +37,6 @@ bool Cal3DS2::equals(const Cal3DS2& K, double tol) const {
|
|||
return true;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Matrix29 D2dcalibration(double x, double y, double xx,
|
||||
double yy, double xy, double rr, double r4, double pnx, double pny,
|
||||
const Matrix2& DK) {
|
||||
Matrix25 DR1;
|
||||
DR1 << pnx, 0.0, pny, 1.0, 0.0, 0.0, pny, 0.0, 0.0, 1.0;
|
||||
Matrix24 DR2;
|
||||
DR2 << x * rr, x * r4, 2 * xy, rr + 2 * xx, //
|
||||
y * rr, y * r4, rr + 2 * yy, 2 * xy;
|
||||
Matrix29 D;
|
||||
D << DR1, DK * DR2;
|
||||
return D;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Matrix2 D2dintrinsic(double x, double y, double rr,
|
||||
double g, double k1, double k2, double p1, double p2,
|
||||
const Matrix2& DK) {
|
||||
const double drdx = 2. * x;
|
||||
const double drdy = 2. * y;
|
||||
const double dgdx = k1 * drdx + k2 * 2. * rr * drdx;
|
||||
const double dgdy = k1 * drdy + k2 * 2. * rr * drdy;
|
||||
|
||||
// Dx = 2*p1*xy + p2*(rr+2*xx);
|
||||
// Dy = 2*p2*xy + p1*(rr+2*yy);
|
||||
const double dDxdx = 2. * p1 * y + p2 * (drdx + 4. * x);
|
||||
const double dDxdy = 2. * p1 * x + p2 * drdy;
|
||||
const double dDydx = 2. * p2 * y + p1 * drdx;
|
||||
const double dDydy = 2. * p2 * x + p1 * (drdy + 4. * y);
|
||||
|
||||
Matrix2 DR;
|
||||
DR << g + x * dgdx + dDxdx, x * dgdy + dDxdy, //
|
||||
y * dgdx + dDydx, g + y * dgdy + dDydy;
|
||||
|
||||
return DK * DR;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2::uncalibrate(const Point2& p, boost::optional<Matrix&> H1,
|
||||
boost::optional<Matrix&> H2) const {
|
||||
|
||||
// rr = x^2 + y^2;
|
||||
// g = (1 + k(1)*rr + k(2)*rr^2);
|
||||
// dp = [2*k(3)*x*y + k(4)*(rr + 2*x^2); 2*k(4)*x*y + k(3)*(rr + 2*y^2)];
|
||||
// pi(:,i) = g * pn(:,i) + dp;
|
||||
const double x = p.x(), y = p.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = 1. + k1_ * rr + k2_ * r4; // scaling factor
|
||||
|
||||
// tangential component
|
||||
const double dx = 2. * p1_ * xy + p2_ * (rr + 2. * xx);
|
||||
const double dy = 2. * p2_ * xy + p1_ * (rr + 2. * yy);
|
||||
|
||||
// Radial and tangential distortion applied
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
|
||||
Matrix2 DK;
|
||||
if (H1 || H2) DK << fx_, s_, 0.0, fy_;
|
||||
|
||||
// Derivative for calibration
|
||||
if (H1)
|
||||
*H1 = D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
|
||||
// Derivative for points
|
||||
if (H2)
|
||||
*H2 = D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
|
||||
// Regular uncalibrate after distortion
|
||||
return Point2(fx_ * pnx + s_ * pny + u0_, fy_ * pny + v0_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2::calibrate(const Point2& pi, const double tol) const {
|
||||
// Use the following fixed point iteration to invert the radial distortion.
|
||||
// pn_{t+1} = (inv(K)*pi - dp(pn_{t})) / g(pn_{t})
|
||||
|
||||
const Point2 invKPi ((1 / fx_) * (pi.x() - u0_ - (s_ / fy_) * (pi.y() - v0_)),
|
||||
(1 / fy_) * (pi.y() - v0_));
|
||||
|
||||
// initialize by ignoring the distortion at all, might be problematic for pixels around boundary
|
||||
Point2 pn = invKPi;
|
||||
|
||||
// iterate until the uncalibrate is close to the actual pixel coordinate
|
||||
const int maxIterations = 10;
|
||||
int iteration;
|
||||
for (iteration = 0; iteration < maxIterations; ++iteration) {
|
||||
if (uncalibrate(pn).distance(pi) <= tol) break;
|
||||
const double x = pn.x(), y = pn.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double g = (1 + k1_ * rr + k2_ * rr * rr);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
pn = (invKPi - Point2(dx, dy)) / g;
|
||||
}
|
||||
|
||||
if ( iteration >= maxIterations )
|
||||
throw std::runtime_error("Cal3DS2::calibrate fails to converge. need a better initialization");
|
||||
|
||||
return pn;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2::D2d_intrinsic(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
Matrix2 DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2::D2d_calibration(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y, xy = x * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
Matrix2 DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Cal3DS2 Cal3DS2::retract(const Vector& d) const {
|
||||
return Cal3DS2(vector() + d);
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
|
||||
/**
|
||||
* @file Cal3DS2.h
|
||||
* @brief Calibration of a camera with radial distortion
|
||||
* @brief Calibration of a camera with radial distortion, calculations in base class Cal3DS2_Base
|
||||
* @date Feb 28, 2010
|
||||
* @author ydjian
|
||||
*/
|
||||
|
@ -19,7 +19,7 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/Cal3DS2_Base.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -37,29 +37,21 @@ namespace gtsam {
|
|||
* k3 (rr + 2 Pn.y^2) + 2*k4 pn.x pn.y ]
|
||||
* pi = K*pn
|
||||
*/
|
||||
class GTSAM_EXPORT Cal3DS2 {
|
||||
class GTSAM_EXPORT Cal3DS2 : public Cal3DS2_Base, public DerivedValue<Cal3DS2> {
|
||||
|
||||
protected:
|
||||
|
||||
double fx_, fy_, s_, u0_, v0_ ; // focal length, skew and principal point
|
||||
double k1_, k2_ ; // radial 2nd-order and 4th-order
|
||||
double p1_, p2_ ; // tangential distortion
|
||||
typedef Cal3DS2_Base Base;
|
||||
|
||||
public:
|
||||
|
||||
Matrix K() const ;
|
||||
Eigen::Vector4d k() const { return Eigen::Vector4d(k1_, k2_, p1_, p2_); }
|
||||
Vector vector() const ;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/// Default Constructor with only unit focal length
|
||||
Cal3DS2() : fx_(1), fy_(1), s_(0), u0_(0), v0_(0), k1_(0), k2_(0), p1_(0), p2_(0) {}
|
||||
Cal3DS2() : Base() {}
|
||||
|
||||
Cal3DS2(double fx, double fy, double s, double u0, double v0,
|
||||
double k1, double k2, double p1 = 0.0, double p2 = 0.0) :
|
||||
fx_(fx), fy_(fy), s_(s), u0_(u0), v0_(v0), k1_(k1), k2_(k2), p1_(p1), p2_(p2) {}
|
||||
Base(fx, fy, s, u0, v0, k1, k2, p1, p2) {}
|
||||
|
||||
virtual ~Cal3DS2() {}
|
||||
|
||||
|
@ -67,7 +59,7 @@ public:
|
|||
/// @name Advanced Constructors
|
||||
/// @{
|
||||
|
||||
Cal3DS2(const Vector &v) ;
|
||||
Cal3DS2(const Vector &v) : Base(v) {}
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
|
@ -79,57 +71,6 @@ public:
|
|||
/// assert equality up to a tolerance
|
||||
bool equals(const Cal3DS2& K, double tol = 10e-9) const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/// focal length x
|
||||
inline double fx() const { return fx_;}
|
||||
|
||||
/// focal length x
|
||||
inline double fy() const { return fy_;}
|
||||
|
||||
/// skew
|
||||
inline double skew() const { return s_;}
|
||||
|
||||
/// image center in x
|
||||
inline double px() const { return u0_;}
|
||||
|
||||
/// image center in y
|
||||
inline double py() const { return v0_;}
|
||||
|
||||
/// First distortion coefficient
|
||||
inline double k1() const { return k1_;}
|
||||
|
||||
/// Second distortion coefficient
|
||||
inline double k2() const { return k2_;}
|
||||
|
||||
/// First tangential distortion coefficient
|
||||
inline double p1() const { return p1_;}
|
||||
|
||||
/// Second tangential distortion coefficient
|
||||
inline double p2() const { return p2_;}
|
||||
|
||||
/**
|
||||
* convert intrinsic coordinates xy to (distorted) image coordinates uv
|
||||
* @param p point in intrinsic coordinates
|
||||
* @param Dcal optional 2*9 Jacobian wrpt Cal3DS2 parameters
|
||||
* @param Dp optional 2*2 Jacobian wrpt intrinsic coordinates
|
||||
* @return point in (distorted) image coordinates
|
||||
*/
|
||||
Point2 uncalibrate(const Point2& p,
|
||||
boost::optional<Matrix&> Dcal = boost::none,
|
||||
boost::optional<Matrix&> Dp = boost::none) const ;
|
||||
|
||||
/// Convert (distorted) image coordinates uv to intrinsic coordinates xy
|
||||
Point2 calibrate(const Point2& p, const double tol=1e-5) const;
|
||||
|
||||
/// Derivative of uncalibrate wrpt intrinsic coordinates
|
||||
Matrix D2d_intrinsic(const Point2& p) const ;
|
||||
|
||||
/// Derivative of uncalibrate wrpt the calibration parameters
|
||||
Matrix D2d_calibration(const Point2& p) const ;
|
||||
|
||||
/// @}
|
||||
/// @name Manifold
|
||||
/// @{
|
||||
|
@ -155,15 +96,10 @@ private:
|
|||
template<class Archive>
|
||||
void serialize(Archive & ar, const unsigned int version)
|
||||
{
|
||||
ar & BOOST_SERIALIZATION_NVP(fx_);
|
||||
ar & BOOST_SERIALIZATION_NVP(fy_);
|
||||
ar & BOOST_SERIALIZATION_NVP(s_);
|
||||
ar & BOOST_SERIALIZATION_NVP(u0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(v0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k2_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p2_);
|
||||
ar & boost::serialization::make_nvp("Cal3DS2",
|
||||
boost::serialization::base_object<Value>(*this));
|
||||
ar & boost::serialization::make_nvp("Cal3DS2",
|
||||
boost::serialization::base_object<Cal3DS2_Base>(*this));
|
||||
}
|
||||
|
||||
};
|
||||
|
|
|
@ -0,0 +1,187 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Cal3DS2_Base.cpp
|
||||
* @date Feb 28, 2010
|
||||
* @author ydjian
|
||||
*/
|
||||
|
||||
#include <gtsam/base/Vector.h>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/geometry/Cal3DS2_Base.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
Cal3DS2_Base::Cal3DS2_Base(const Vector &v):
|
||||
fx_(v[0]), fy_(v[1]), s_(v[2]), u0_(v[3]), v0_(v[4]), k1_(v[5]), k2_(v[6]), p1_(v[7]), p2_(v[8]){}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2_Base::K() const {
|
||||
return (Matrix(3, 3) << fx_, s_, u0_, 0.0, fy_, v0_, 0.0, 0.0, 1.0);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector Cal3DS2_Base::vector() const {
|
||||
return (Vector(9) << fx_, fy_, s_, u0_, v0_, k1_, k2_, p1_, p2_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Cal3DS2_Base::print(const std::string& s_) const {
|
||||
gtsam::print(K(), s_ + ".K");
|
||||
gtsam::print(Vector(k()), s_ + ".k");
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool Cal3DS2_Base::equals(const Cal3DS2_Base& K, double tol) const {
|
||||
if (fabs(fx_ - K.fx_) > tol || fabs(fy_ - K.fy_) > tol || fabs(s_ - K.s_) > tol ||
|
||||
fabs(u0_ - K.u0_) > tol || fabs(v0_ - K.v0_) > tol || fabs(k1_ - K.k1_) > tol ||
|
||||
fabs(k2_ - K.k2_) > tol || fabs(p1_ - K.p1_) > tol || fabs(p2_ - K.p2_) > tol)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Eigen::Matrix<double, 2, 9> D2dcalibration(double x, double y, double xx,
|
||||
double yy, double xy, double rr, double r4, double pnx, double pny,
|
||||
const Eigen::Matrix<double, 2, 2>& DK) {
|
||||
Eigen::Matrix<double, 2, 5> DR1;
|
||||
DR1 << pnx, 0.0, pny, 1.0, 0.0, 0.0, pny, 0.0, 0.0, 1.0;
|
||||
Eigen::Matrix<double, 2, 4> DR2;
|
||||
DR2 << x * rr, x * r4, 2 * xy, rr + 2 * xx, //
|
||||
y * rr, y * r4, rr + 2 * yy, 2 * xy;
|
||||
Eigen::Matrix<double, 2, 9> D;
|
||||
D << DR1, DK * DR2;
|
||||
return D;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Eigen::Matrix<double, 2, 2> D2dintrinsic(double x, double y, double rr,
|
||||
double g, double k1, double k2, double p1, double p2,
|
||||
const Eigen::Matrix<double, 2, 2>& DK) {
|
||||
const double drdx = 2. * x;
|
||||
const double drdy = 2. * y;
|
||||
const double dgdx = k1 * drdx + k2 * 2. * rr * drdx;
|
||||
const double dgdy = k1 * drdy + k2 * 2. * rr * drdy;
|
||||
|
||||
// Dx = 2*p1*xy + p2*(rr+2*xx);
|
||||
// Dy = 2*p2*xy + p1*(rr+2*yy);
|
||||
const double dDxdx = 2. * p1 * y + p2 * (drdx + 4. * x);
|
||||
const double dDxdy = 2. * p1 * x + p2 * drdy;
|
||||
const double dDydx = 2. * p2 * y + p1 * drdx;
|
||||
const double dDydy = 2. * p2 * x + p1 * (drdy + 4. * y);
|
||||
|
||||
Eigen::Matrix<double, 2, 2> DR;
|
||||
DR << g + x * dgdx + dDxdx, x * dgdy + dDxdy, //
|
||||
y * dgdx + dDydx, g + y * dgdy + dDydy;
|
||||
|
||||
return DK * DR;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2_Base::uncalibrate(const Point2& p, boost::optional<Matrix&> H1,
|
||||
boost::optional<Matrix&> H2) const {
|
||||
|
||||
// rr = x^2 + y^2;
|
||||
// g = (1 + k(1)*rr + k(2)*rr^2);
|
||||
// dp = [2*k(3)*x*y + k(4)*(rr + 2*x^2); 2*k(4)*x*y + k(3)*(rr + 2*y^2)];
|
||||
// pi(:,i) = g * pn(:,i) + dp;
|
||||
const double x = p.x(), y = p.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = 1. + k1_ * rr + k2_ * r4; // scaling factor
|
||||
|
||||
// tangential component
|
||||
const double dx = 2. * p1_ * xy + p2_ * (rr + 2. * xx);
|
||||
const double dy = 2. * p2_ * xy + p1_ * (rr + 2. * yy);
|
||||
|
||||
// Radial and tangential distortion applied
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
if (H1 || H2) DK << fx_, s_, 0.0, fy_;
|
||||
|
||||
// Derivative for calibration
|
||||
if (H1)
|
||||
*H1 = D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
|
||||
// Derivative for points
|
||||
if (H2)
|
||||
*H2 = D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
|
||||
// Regular uncalibrate after distortion
|
||||
return Point2(fx_ * pnx + s_ * pny + u0_, fy_ * pny + v0_);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 Cal3DS2_Base::calibrate(const Point2& pi, const double tol) const {
|
||||
// Use the following fixed point iteration to invert the radial distortion.
|
||||
// pn_{t+1} = (inv(K)*pi - dp(pn_{t})) / g(pn_{t})
|
||||
|
||||
const Point2 invKPi ((1 / fx_) * (pi.x() - u0_ - (s_ / fy_) * (pi.y() - v0_)),
|
||||
(1 / fy_) * (pi.y() - v0_));
|
||||
|
||||
// initialize by ignoring the distortion at all, might be problematic for pixels around boundary
|
||||
Point2 pn = invKPi;
|
||||
|
||||
// iterate until the uncalibrate is close to the actual pixel coordinate
|
||||
const int maxIterations = 10;
|
||||
int iteration;
|
||||
for (iteration = 0; iteration < maxIterations; ++iteration) {
|
||||
if (uncalibrate(pn).distance(pi) <= tol) break;
|
||||
const double x = pn.x(), y = pn.y(), xy = x * y, xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double g = (1 + k1_ * rr + k2_ * rr * rr);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
pn = (invKPi - Point2(dx, dy)) / g;
|
||||
}
|
||||
|
||||
if ( iteration >= maxIterations )
|
||||
throw std::runtime_error("Cal3DS2::calibrate fails to converge. need a better initialization");
|
||||
|
||||
return pn;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2_Base::D2d_intrinsic(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dintrinsic(x, y, rr, g, k1_, k2_, p1_, p2_, DK);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Matrix Cal3DS2_Base::D2d_calibration(const Point2& p) const {
|
||||
const double x = p.x(), y = p.y(), xx = x * x, yy = y * y, xy = x * y;
|
||||
const double rr = xx + yy;
|
||||
const double r4 = rr * rr;
|
||||
const double g = (1 + k1_ * rr + k2_ * r4);
|
||||
const double dx = 2 * p1_ * xy + p2_ * (rr + 2 * xx);
|
||||
const double dy = 2 * p2_ * xy + p1_ * (rr + 2 * yy);
|
||||
const double pnx = g * x + dx;
|
||||
const double pny = g * y + dy;
|
||||
Eigen::Matrix<double, 2, 2> DK;
|
||||
DK << fx_, s_, 0.0, fy_;
|
||||
return D2dcalibration(x, y, xx, yy, xy, rr, r4, pnx, pny, DK);
|
||||
}
|
||||
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
@ -0,0 +1,158 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Cal3DS2.h
|
||||
* @brief Calibration of a camera with radial distortion
|
||||
* @date Feb 28, 2010
|
||||
* @author ydjian
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief Calibration of a camera with radial distortion
|
||||
* @addtogroup geometry
|
||||
* \nosubgrouping
|
||||
*
|
||||
* Uses same distortionmodel as OpenCV, with
|
||||
* http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
|
||||
* but using only k1,k2,p1, and p2 coefficients.
|
||||
* K = [ fx s u0 ; 0 fy v0 ; 0 0 1 ]
|
||||
* rr = Pn.x^2 + Pn.y^2
|
||||
* \hat{pn} = (1 + k1*rr + k2*rr^2 ) pn + [ 2*k3 pn.x pn.y + k4 (rr + 2 Pn.x^2) ;
|
||||
* k3 (rr + 2 Pn.y^2) + 2*k4 pn.x pn.y ]
|
||||
* pi = K*pn
|
||||
*/
|
||||
class GTSAM_EXPORT Cal3DS2_Base {
|
||||
|
||||
protected:
|
||||
|
||||
double fx_, fy_, s_, u0_, v0_ ; // focal length, skew and principal point
|
||||
double k1_, k2_ ; // radial 2nd-order and 4th-order
|
||||
double p1_, p2_ ; // tangential distortion
|
||||
|
||||
public:
|
||||
Matrix K() const ;
|
||||
Eigen::Vector4d k() const { return Eigen::Vector4d(k1_, k2_, p1_, p2_); }
|
||||
Vector vector() const ;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/// Default Constructor with only unit focal length
|
||||
Cal3DS2_Base() : fx_(1), fy_(1), s_(0), u0_(0), v0_(0), k1_(0), k2_(0), p1_(0), p2_(0) {}
|
||||
|
||||
Cal3DS2_Base(double fx, double fy, double s, double u0, double v0,
|
||||
double k1, double k2, double p1 = 0.0, double p2 = 0.0) :
|
||||
fx_(fx), fy_(fy), s_(s), u0_(u0), v0_(v0), k1_(k1), k2_(k2), p1_(p1), p2_(p2) {}
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Constructors
|
||||
/// @{
|
||||
|
||||
Cal3DS2_Base(const Vector &v) ;
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/// print with optional string
|
||||
void print(const std::string& s = "") const ;
|
||||
|
||||
/// assert equality up to a tolerance
|
||||
bool equals(const Cal3DS2_Base& K, double tol = 10e-9) const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/// focal length x
|
||||
inline double fx() const { return fx_;}
|
||||
|
||||
/// focal length x
|
||||
inline double fy() const { return fy_;}
|
||||
|
||||
/// skew
|
||||
inline double skew() const { return s_;}
|
||||
|
||||
/// image center in x
|
||||
inline double px() const { return u0_;}
|
||||
|
||||
/// image center in y
|
||||
inline double py() const { return v0_;}
|
||||
|
||||
/// First distortion coefficient
|
||||
inline double k1() const { return k1_;}
|
||||
|
||||
/// Second distortion coefficient
|
||||
inline double k2() const { return k2_;}
|
||||
|
||||
/// First tangential distortion coefficient
|
||||
inline double p1() const { return p1_;}
|
||||
|
||||
/// Second tangential distortion coefficient
|
||||
inline double p2() const { return p2_;}
|
||||
|
||||
/**
|
||||
* convert intrinsic coordinates xy to (distorted) image coordinates uv
|
||||
* @param p point in intrinsic coordinates
|
||||
* @param Dcal optional 2*9 Jacobian wrpt Cal3DS2 parameters
|
||||
* @param Dp optional 2*2 Jacobian wrpt intrinsic coordinates
|
||||
* @return point in (distorted) image coordinates
|
||||
*/
|
||||
Point2 uncalibrate(const Point2& p,
|
||||
boost::optional<Matrix&> Dcal = boost::none,
|
||||
boost::optional<Matrix&> Dp = boost::none) const ;
|
||||
|
||||
/// Convert (distorted) image coordinates uv to intrinsic coordinates xy
|
||||
Point2 calibrate(const Point2& p, const double tol=1e-5) const;
|
||||
|
||||
/// Derivative of uncalibrate wrpt intrinsic coordinates
|
||||
Matrix D2d_intrinsic(const Point2& p) const ;
|
||||
|
||||
/// Derivative of uncalibrate wrpt the calibration parameters
|
||||
Matrix D2d_calibration(const Point2& p) const ;
|
||||
|
||||
|
||||
private:
|
||||
|
||||
/// @}
|
||||
/// @name Advanced Interface
|
||||
/// @{
|
||||
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class Archive>
|
||||
void serialize(Archive & ar, const unsigned int version)
|
||||
{
|
||||
ar & BOOST_SERIALIZATION_NVP(fx_);
|
||||
ar & BOOST_SERIALIZATION_NVP(fy_);
|
||||
ar & BOOST_SERIALIZATION_NVP(s_);
|
||||
ar & BOOST_SERIALIZATION_NVP(u0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(v0_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(k2_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p1_);
|
||||
ar & BOOST_SERIALIZATION_NVP(p2_);
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
|
@ -22,8 +22,8 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/Cal3DS2.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <gtsam/geometry/Cal3DS2_Base.h>
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -40,18 +40,16 @@ namespace gtsam {
|
|||
* k3 (rr + 2 Pn.y^2) + 2*k4 pn.x pn.y ]
|
||||
* pi = K*pn
|
||||
*/
|
||||
class GTSAM_EXPORT Cal3Unified : public Cal3DS2 {
|
||||
class GTSAM_EXPORT Cal3Unified : public Cal3DS2_Base, public DerivedValue<Cal3Unified> {
|
||||
|
||||
typedef Cal3Unified This;
|
||||
typedef Cal3DS2 Base;
|
||||
typedef Cal3DS2_Base Base;
|
||||
|
||||
private:
|
||||
|
||||
double xi_; // mirror parameter
|
||||
|
||||
public:
|
||||
/// dimension of the variable - used to autodetect sizes
|
||||
static const size_t dimension = 10;
|
||||
|
||||
Vector vector() const ;
|
||||
|
||||
|
@ -91,7 +89,7 @@ public:
|
|||
/**
|
||||
* convert intrinsic coordinates xy to image coordinates uv
|
||||
* @param p point in intrinsic coordinates
|
||||
* @param Dcal optional 2*9 Jacobian wrpt Cal3DS2 parameters
|
||||
* @param Dcal optional 2*10 Jacobian wrpt Cal3Unified parameters
|
||||
* @param Dp optional 2*2 Jacobian wrpt intrinsic coordinates
|
||||
* @return point in image coordinates
|
||||
*/
|
||||
|
@ -131,6 +129,10 @@ private:
|
|||
template<class Archive>
|
||||
void serialize(Archive & ar, const unsigned int version)
|
||||
{
|
||||
ar & boost::serialization::make_nvp("Cal3Unified",
|
||||
boost::serialization::base_object<Value>(*this));
|
||||
ar & boost::serialization::make_nvp("Cal3Unified",
|
||||
boost::serialization::base_object<Cal3DS2_Base>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(xi_);
|
||||
}
|
||||
|
||||
|
|
|
@ -21,7 +21,16 @@
|
|||
#include <gtsam/geometry/Unit3.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
|
||||
#ifdef __clang__
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wunused-variable"
|
||||
#endif
|
||||
#include <boost/random/uniform_on_sphere.hpp>
|
||||
#ifdef __clang__
|
||||
# pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
#include <boost/random/variate_generator.hpp>
|
||||
#include <iostream>
|
||||
|
||||
|
@ -58,11 +67,11 @@ Unit3 Unit3::Random(boost::mt19937 & rng) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
const Matrix& Unit3::basis() const {
|
||||
const Unit3::Matrix32& Unit3::basis() const {
|
||||
|
||||
// Return cached version if exists
|
||||
if (B_.rows() == 3)
|
||||
return B_;
|
||||
if (B_)
|
||||
return *B_;
|
||||
|
||||
// Get the axis of rotation with the minimum projected length of the point
|
||||
Point3 axis;
|
||||
|
@ -83,9 +92,9 @@ const Matrix& Unit3::basis() const {
|
|||
b2 = b2 / b2.norm();
|
||||
|
||||
// Create the basis matrix
|
||||
B_ = Matrix(3, 2);
|
||||
B_ << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
|
||||
return B_;
|
||||
B_.reset(Unit3::Matrix32());
|
||||
(*B_) << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
|
||||
return *B_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/base/DerivedValue.h>
|
||||
#include <boost/random/mersenne_twister.hpp>
|
||||
#include <boost/optional.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -31,8 +32,10 @@ class GTSAM_EXPORT Unit3{
|
|||
|
||||
private:
|
||||
|
||||
typedef Eigen::Matrix<double,3,2> Matrix32;
|
||||
|
||||
Point3 p_; ///< The location of the point on the unit sphere
|
||||
mutable Matrix B_; ///< Cached basis
|
||||
mutable boost::optional<Matrix32> B_; ///< Cached basis
|
||||
|
||||
public:
|
||||
|
||||
|
@ -84,7 +87,7 @@ public:
|
|||
* It is a 3*2 matrix [b1 b2] composed of two orthogonal directions
|
||||
* tangent to the sphere at the current direction.
|
||||
*/
|
||||
const Matrix& basis() const;
|
||||
const Matrix32& basis() const;
|
||||
|
||||
/// Return skew-symmetric associated with 3D point on unit sphere
|
||||
Matrix skew() const;
|
||||
|
|
|
@ -19,6 +19,9 @@
|
|||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/geometry/Cal3Unified.h>
|
||||
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
|
||||
using namespace gtsam;
|
||||
|
||||
GTSAM_CONCEPT_TESTABLE_INST(Cal3Unified)
|
||||
|
@ -97,6 +100,19 @@ TEST( Cal3Unified, retract)
|
|||
CHECK(assert_equal(d,K.localCoordinates(actual),1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( Cal3Unified, DerivedValue)
|
||||
{
|
||||
Values values;
|
||||
Cal3Unified cal(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
|
||||
Key key = 1;
|
||||
values.insert(key, cal);
|
||||
|
||||
Cal3Unified calafter = values.at<Cal3Unified>(key);
|
||||
|
||||
CHECK(assert_equal(cal,calafter,1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -183,25 +183,30 @@ TEST( PinholeCamera, Dproject)
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
//static Point2 projectInfinity3(const Pose3& pose, const Point2& point2D, const Cal3_S2& cal) {
|
||||
// Point3 point(point2D.x(), point2D.y(), 1.0);
|
||||
// return Camera(pose,cal).projectPointAtInfinity(point);
|
||||
//}
|
||||
//
|
||||
//TEST( PinholeCamera, Dproject_Infinity)
|
||||
//{
|
||||
// Matrix Dpose, Dpoint, Dcal;
|
||||
// Point2 point2D(-0.08,-0.08);
|
||||
// Point3 point3D(point1.x(), point1.y(), 1.0);
|
||||
// Point2 result = camera.projectPointAtInfinity(point3D, Dpose, Dpoint, Dcal);
|
||||
// Matrix numerical_pose = numericalDerivative31(projectInfinity3, pose1, point2D, K);
|
||||
// Matrix numerical_point = numericalDerivative32(projectInfinity3, pose1, point2D, K);
|
||||
// Matrix numerical_cal = numericalDerivative33(projectInfinity3, pose1, point2D, K);
|
||||
// CHECK(assert_equal(numerical_pose, Dpose, 1e-7));
|
||||
// CHECK(assert_equal(numerical_point, Dpoint, 1e-7));
|
||||
// CHECK(assert_equal(numerical_cal, Dcal, 1e-7));
|
||||
//}
|
||||
//
|
||||
static Point2 projectInfinity3(const Pose3& pose, const Point3& point3D, const Cal3_S2& cal) {
|
||||
return Camera(pose,cal).projectPointAtInfinity(point3D);
|
||||
}
|
||||
|
||||
TEST( PinholeCamera, Dproject_Infinity)
|
||||
{
|
||||
Matrix Dpose, Dpoint, Dcal;
|
||||
Point3 point3D(point1.x(), point1.y(), -10.0); // a point in front of the camera
|
||||
|
||||
// test Projection
|
||||
Point2 actual = camera.projectPointAtInfinity(point3D, Dpose, Dpoint, Dcal);
|
||||
Point2 expected(-5.0, 5.0);
|
||||
CHECK(assert_equal(actual, expected, 1e-7));
|
||||
|
||||
// test Jacobians
|
||||
Matrix numerical_pose = numericalDerivative31(projectInfinity3, pose1, point3D, K);
|
||||
Matrix numerical_point = numericalDerivative32(projectInfinity3, pose1, point3D, K);
|
||||
Matrix numerical_point2x2 = numerical_point.block(0,0,2,2); // only the direction to the point matters
|
||||
Matrix numerical_cal = numericalDerivative33(projectInfinity3, pose1, point3D, K);
|
||||
CHECK(assert_equal(numerical_pose, Dpose, 1e-7));
|
||||
CHECK(assert_equal(numerical_point2x2, Dpoint, 1e-7));
|
||||
CHECK(assert_equal(numerical_cal, Dcal, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Point2 project4(const Camera& camera, const Point3& point) {
|
||||
return camera.project2(point);
|
||||
|
|
|
@ -184,7 +184,15 @@ TEST(Rot3, log)
|
|||
CHECK_OMEGA( PI, 0, 0)
|
||||
CHECK_OMEGA( 0, PI, 0)
|
||||
CHECK_OMEGA( 0, 0, PI)
|
||||
|
||||
// Windows and Linux have flipped sign in quaternion mode
|
||||
#if !defined(__APPLE__) && defined (GTSAM_USE_QUATERNIONS)
|
||||
w = (Vector(3) << x*PI, y*PI, z*PI);
|
||||
R = Rot3::rodriguez(w);
|
||||
EXPECT(assert_equal(Vector(-w), Rot3::Logmap(R),1e-12));
|
||||
#else
|
||||
CHECK_OMEGA(x*PI,y*PI,z*PI)
|
||||
#endif
|
||||
|
||||
// Check 360 degree rotations
|
||||
#define CHECK_OMEGA_ZERO(X,Y,Z) \
|
||||
|
|
|
@ -37,7 +37,6 @@ GTSAM_CONCEPT_LIE_INST(Rot3)
|
|||
|
||||
static Rot3 R = Rot3::rodriguez(0.1, 0.4, 0.2);
|
||||
static Point3 P(0.2, 0.7, -2.0);
|
||||
static double error = 1e-9, epsilon = 0.001;
|
||||
static const Matrix I3 = eye(3);
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
#include <gtsam/geometry/PinholeCamera.h>
|
||||
#include <gtsam/geometry/Cal3DS2.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
#include <gtsam/geometry/Cal3Unified.h>
|
||||
#include <gtsam/geometry/StereoCamera.h>
|
||||
#include <gtsam/geometry/StereoPoint2.h>
|
||||
|
||||
|
@ -46,6 +47,7 @@ static Cal3Bundler cal3(1.0, 2.0, 3.0);
|
|||
static Cal3_S2Stereo cal4(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
|
||||
static Cal3_S2Stereo::shared_ptr cal4ptr(new Cal3_S2Stereo(cal4));
|
||||
static CalibratedCamera cal5(Pose3(rt3, pt3));
|
||||
static Cal3Unified cal6(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0);
|
||||
|
||||
static PinholeCamera<Cal3_S2> cam1(pose3, cal1);
|
||||
static StereoCamera cam2(pose3, cal4ptr);
|
||||
|
@ -66,6 +68,7 @@ TEST (Serialization, text_geometry) {
|
|||
EXPECT(equalsObj(cal3));
|
||||
EXPECT(equalsObj(cal4));
|
||||
EXPECT(equalsObj(cal5));
|
||||
EXPECT(equalsObj(cal6));
|
||||
|
||||
EXPECT(equalsObj(cam1));
|
||||
EXPECT(equalsObj(cam2));
|
||||
|
|
|
@ -174,7 +174,7 @@ Point3 triangulateNonlinear(
|
|||
* @param poses A vector of camera poses
|
||||
* @param sharedCal shared pointer to single calibration object
|
||||
* @param measurements A vector of camera measurements
|
||||
* @param rank tolerance, default 1e-9
|
||||
* @param rank_tol rank tolerance, default 1e-9
|
||||
* @param optimize Flag to turn on nonlinear refinement of triangulation
|
||||
* @return Returns a Point3
|
||||
*/
|
||||
|
@ -222,7 +222,7 @@ Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
|||
* no other checks to verify the quality of the triangulation.
|
||||
* @param cameras pinhole cameras
|
||||
* @param measurements A vector of camera measurements
|
||||
* @param rank tolerance, default 1e-9
|
||||
* @param rank_tol rank tolerance, default 1e-9
|
||||
* @param optimize Flag to turn on nonlinear refinement of triangulation
|
||||
* @return Returns a Point3
|
||||
*/
|
||||
|
|
|
@ -111,7 +111,7 @@ namespace gtsam {
|
|||
* assumed to have already been solved in and their values are read from \c x.
|
||||
* This function works for multiple frontal variables.
|
||||
*
|
||||
* Given the Gaussian conditional with log likelihood \f$ |R x_f - (d - S x_s)|^2,
|
||||
* Given the Gaussian conditional with log likelihood \f$ |R x_f - (d - S x_s)|^2 \f$,
|
||||
* where \f$ f \f$ are the frontal variables and \f$ s \f$ are the separator
|
||||
* variables of this conditional, this solve function computes
|
||||
* \f$ x_f = R^{-1} (d - S x_s) \f$ using back-substitution.
|
||||
|
|
|
@ -77,10 +77,12 @@ void NonlinearOptimizer::defaultOptimize() {
|
|||
params.errorTol, currentError, this->error(), params.verbosity));
|
||||
|
||||
// Printing if verbose
|
||||
if (params.verbosity >= NonlinearOptimizerParams::TERMINATION &&
|
||||
this->iterations() >= params.maxIterations)
|
||||
if (params.verbosity >= NonlinearOptimizerParams::TERMINATION) {
|
||||
cout << "iterations: " << this->iterations() << " >? " << params.maxIterations << endl;
|
||||
if (this->iterations() >= params.maxIterations)
|
||||
cout << "Terminating because reached maximum iterations" << endl;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
const Values& NonlinearOptimizer::optimizeSafely() {
|
||||
|
|
|
@ -28,6 +28,7 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key Essential Matrix variable key
|
||||
* @param pA point in first camera, in calibrated coordinates
|
||||
* @param pB point in second camera, in calibrated coordinates
|
||||
* @param model noise model is about dot product in ideal, homogeneous coordinates
|
||||
|
@ -41,6 +42,7 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key Essential Matrix variable key
|
||||
* @param pA point in first camera, in pixel coordinates
|
||||
* @param pB point in second camera, in pixel coordinates
|
||||
* @param model noise model is about dot product in ideal, homogeneous coordinates
|
||||
|
@ -97,6 +99,8 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key1 Essential Matrix variable key
|
||||
* @param key2 Inverse depth variable key
|
||||
* @param pA point in first camera, in calibrated coordinates
|
||||
* @param pB point in second camera, in calibrated coordinates
|
||||
* @param model noise model should be in pixels, as well
|
||||
|
@ -111,6 +115,8 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key1 Essential Matrix variable key
|
||||
* @param key2 Inverse depth variable key
|
||||
* @param pA point in first camera, in pixel coordinates
|
||||
* @param pB point in second camera, in pixel coordinates
|
||||
* @param K calibration object, will be used only in constructor
|
||||
|
@ -216,6 +222,8 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key1 Essential Matrix variable key
|
||||
* @param key2 Inverse depth variable key
|
||||
* @param pA point in first camera, in calibrated coordinates
|
||||
* @param pB point in second camera, in calibrated coordinates
|
||||
* @param bRc extra rotation between "body" and "camera" frame
|
||||
|
@ -228,6 +236,8 @@ public:
|
|||
|
||||
/**
|
||||
* Constructor
|
||||
* @param key1 Essential Matrix variable key
|
||||
* @param key2 Inverse depth variable key
|
||||
* @param pA point in first camera, in pixel coordinates
|
||||
* @param pB point in second camera, in pixel coordinates
|
||||
* @param K calibration object, will be used only in constructor
|
||||
|
|
|
@ -80,7 +80,7 @@ public:
|
|||
}
|
||||
|
||||
/// Get matrix P
|
||||
inline const Matrix& getPointCovariance() const {
|
||||
inline const Matrix3& getPointCovariance() const {
|
||||
return PointCovariance_;
|
||||
}
|
||||
|
||||
|
@ -285,26 +285,27 @@ public:
|
|||
return 0.5 * (result + f);
|
||||
}
|
||||
|
||||
/// needed to be GaussianFactor - (I - E*P*E')*(F*x - b)
|
||||
// This is wrong and does not match the definition in Hessian
|
||||
// virtual double error(const VectorValues& x) const {
|
||||
//
|
||||
// // resize does not do malloc if correct size
|
||||
// e1.resize(size());
|
||||
// e2.resize(size());
|
||||
//
|
||||
// // e1 = F * x - b = (2m*dm)*dm
|
||||
// for (size_t k = 0; k < size(); ++k)
|
||||
// e1[k] = Fblocks_[k].second * x.at(keys_[k]) - b_.segment < 2 > (k * 2);
|
||||
// projectError(e1, e2);
|
||||
//
|
||||
// double result = 0;
|
||||
// for (size_t k = 0; k < size(); ++k)
|
||||
// result += dot(e2[k], e2[k]);
|
||||
//
|
||||
// needed to be GaussianFactor - (I - E*P*E')*(F*x - b)
|
||||
// This is wrong and does not match the definition in Hessian,
|
||||
// but it matches the definition of the Jacobian factor (JF)
|
||||
double errorJF(const VectorValues& x) const {
|
||||
|
||||
// resize does not do malloc if correct size
|
||||
e1.resize(size());
|
||||
e2.resize(size());
|
||||
|
||||
// e1 = F * x - b = (2m*dm)*dm
|
||||
for (size_t k = 0; k < size(); ++k)
|
||||
e1[k] = Fblocks_[k].second * x.at(keys_[k]) - b_.segment < 2 > (k * 2);
|
||||
projectError(e1, e2);
|
||||
|
||||
double result = 0;
|
||||
for (size_t k = 0; k < size(); ++k)
|
||||
result += dot(e2[k], e2[k]);
|
||||
|
||||
// std::cout << "implicitFactor::error result " << result << std::endl;
|
||||
// return 0.5 * result;
|
||||
// }
|
||||
return 0.5 * result;
|
||||
}
|
||||
/**
|
||||
* @brief Calculate corrected error Q*e = (I - E*P*E')*e
|
||||
*/
|
||||
|
|
|
@ -0,0 +1,410 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file InitializePose3.h
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
* @date August, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/InitializePose3.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/base/timing.h>
|
||||
|
||||
#include <boost/math/special_functions.hpp>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
namespace InitializePose3 {
|
||||
|
||||
//static const Matrix I = eye(1);
|
||||
static const Matrix I9 = eye(9);
|
||||
static const Vector zero9 = Vector::Zero(9);
|
||||
static const Matrix zero33= Matrix::Zero(3,3);
|
||||
|
||||
static const Key keyAnchor = symbol('Z', 9999999);
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianFactorGraph buildLinearOrientationGraph(const NonlinearFactorGraph& g) {
|
||||
|
||||
GaussianFactorGraph linearGraph;
|
||||
noiseModel::Unit::shared_ptr model = noiseModel::Unit::Create(9);
|
||||
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g) {
|
||||
Matrix3 Rij;
|
||||
|
||||
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
|
||||
if (pose3Between)
|
||||
Rij = pose3Between->measured().rotation().matrix();
|
||||
else
|
||||
std::cout << "Error in buildLinearOrientationGraph" << std::endl;
|
||||
|
||||
// std::cout << "Rij \n" << Rij << std::endl;
|
||||
|
||||
const FastVector<Key>& keys = factor->keys();
|
||||
Key key1 = keys[0], key2 = keys[1];
|
||||
Matrix M9 = Matrix::Zero(9,9);
|
||||
M9.block(0,0,3,3) = Rij;
|
||||
M9.block(3,3,3,3) = Rij;
|
||||
M9.block(6,6,3,3) = Rij;
|
||||
linearGraph.add(key1, -I9, key2, M9, zero9, model);
|
||||
}
|
||||
// prior on the anchor orientation
|
||||
linearGraph.add(keyAnchor, I9, (Vector(9) << 1.0, 0.0, 0.0,/* */ 0.0, 1.0, 0.0, /* */ 0.0, 0.0, 1.0), model);
|
||||
return linearGraph;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Transform VectorValues into valid Rot3
|
||||
Values normalizeRelaxedRotations(const VectorValues& relaxedRot3) {
|
||||
gttic(InitializePose3_computeOrientationsChordal);
|
||||
|
||||
Matrix ppm = Matrix::Zero(3,3); // plus plus minus
|
||||
ppm(0,0) = 1; ppm(1,1) = 1; ppm(2,2) = -1;
|
||||
|
||||
Values validRot3;
|
||||
BOOST_FOREACH(const VectorValues::value_type& it, relaxedRot3) {
|
||||
Key key = it.first;
|
||||
if (key != keyAnchor) {
|
||||
const Vector& rotVector = it.second;
|
||||
Matrix3 rotMat;
|
||||
rotMat(0,0) = rotVector(0); rotMat(0,1) = rotVector(1); rotMat(0,2) = rotVector(2);
|
||||
rotMat(1,0) = rotVector(3); rotMat(1,1) = rotVector(4); rotMat(1,2) = rotVector(5);
|
||||
rotMat(2,0) = rotVector(6); rotMat(2,1) = rotVector(7); rotMat(2,2) = rotVector(8);
|
||||
|
||||
Matrix U, V; Vector s;
|
||||
svd(rotMat, U, s, V);
|
||||
Matrix3 normalizedRotMat = U * V.transpose();
|
||||
|
||||
// std::cout << "rotMat \n" << rotMat << std::endl;
|
||||
// std::cout << "U V' \n" << U * V.transpose() << std::endl;
|
||||
// std::cout << "V \n" << V << std::endl;
|
||||
|
||||
if(normalizedRotMat.determinant() < 0)
|
||||
normalizedRotMat = U * ppm * V.transpose();
|
||||
|
||||
Rot3 initRot = Rot3(normalizedRotMat);
|
||||
validRot3.insert(key, initRot);
|
||||
}
|
||||
}
|
||||
return validRot3;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Select the subgraph of betweenFactors and transforms priors into between wrt a fictitious node
|
||||
NonlinearFactorGraph buildPose3graph(const NonlinearFactorGraph& graph) {
|
||||
gttic(InitializePose3_buildPose3graph);
|
||||
NonlinearFactorGraph pose3Graph;
|
||||
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, graph) {
|
||||
|
||||
// recast to a between on Pose3
|
||||
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
|
||||
if (pose3Between)
|
||||
pose3Graph.add(pose3Between);
|
||||
|
||||
// recast PriorFactor<Pose3> to BetweenFactor<Pose3>
|
||||
boost::shared_ptr<PriorFactor<Pose3> > pose3Prior =
|
||||
boost::dynamic_pointer_cast<PriorFactor<Pose3> >(factor);
|
||||
if (pose3Prior)
|
||||
pose3Graph.add(
|
||||
BetweenFactor<Pose3>(keyAnchor, pose3Prior->keys()[0],
|
||||
pose3Prior->prior(), pose3Prior->get_noiseModel()));
|
||||
}
|
||||
return pose3Graph;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Return the orientations of a graph including only BetweenFactors<Pose3>
|
||||
Values computeOrientationsChordal(const NonlinearFactorGraph& pose3Graph) {
|
||||
gttic(InitializePose3_computeOrientationsChordal);
|
||||
|
||||
// regularize measurements and plug everything in a factor graph
|
||||
GaussianFactorGraph relaxedGraph = buildLinearOrientationGraph(pose3Graph);
|
||||
|
||||
// Solve the LFG
|
||||
VectorValues relaxedRot3 = relaxedGraph.optimize();
|
||||
|
||||
// normalize and compute Rot3
|
||||
return normalizeRelaxedRotations(relaxedRot3);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Return the orientations of a graph including only BetweenFactors<Pose3>
|
||||
Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const Values& givenGuess, const size_t maxIter, const bool setRefFrame) {
|
||||
gttic(InitializePose3_computeOrientationsGradient);
|
||||
|
||||
// this works on the inverse rotations, according to Tron&Vidal,2011
|
||||
Values inverseRot;
|
||||
inverseRot.insert(keyAnchor, Rot3());
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, givenGuess) {
|
||||
Key key = key_value.key;
|
||||
const Pose3& pose = givenGuess.at<Pose3>(key);
|
||||
inverseRot.insert(key, pose.rotation().inverse());
|
||||
}
|
||||
|
||||
// Create the map of edges incident on each node
|
||||
KeyVectorMap adjEdgesMap;
|
||||
KeyRotMap factorId2RotMap;
|
||||
|
||||
createSymbolicGraph(adjEdgesMap, factorId2RotMap, pose3Graph);
|
||||
|
||||
// calculate max node degree & allocate gradient
|
||||
size_t maxNodeDeg = 0;
|
||||
VectorValues grad;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, inverseRot) {
|
||||
Key key = key_value.key;
|
||||
grad.insert(key,Vector3::Zero());
|
||||
size_t currNodeDeg = (adjEdgesMap.at(key)).size();
|
||||
if(currNodeDeg > maxNodeDeg)
|
||||
maxNodeDeg = currNodeDeg;
|
||||
}
|
||||
|
||||
// Create parameters
|
||||
double b = 1;
|
||||
double f0 = 1/b - (1/b + M_PI) * exp(-b*M_PI);
|
||||
double a = (M_PI*M_PI)/(2*f0);
|
||||
double rho = 2*a*b;
|
||||
double mu_max = maxNodeDeg * rho;
|
||||
double stepsize = 2/mu_max; // = 1/(a b dG)
|
||||
|
||||
std::cout <<" b " << b <<" f0 " << f0 <<" a " << a <<" rho " << rho <<" stepsize " << stepsize << " maxNodeDeg "<< maxNodeDeg << std::endl;
|
||||
double maxGrad;
|
||||
// gradient iterations
|
||||
size_t it;
|
||||
for(it=0; it < maxIter; it++){
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// compute the gradient at each node
|
||||
//std::cout << "it " << it <<" b " << b <<" f0 " << f0 <<" a " << a
|
||||
// <<" rho " << rho <<" stepsize " << stepsize << " maxNodeDeg "<< maxNodeDeg << std::endl;
|
||||
maxGrad = 0;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, inverseRot) {
|
||||
Key key = key_value.key;
|
||||
//std::cout << "---------------------------key " << DefaultKeyFormatter(key) << std::endl;
|
||||
Vector gradKey = Vector3::Zero();
|
||||
// collect the gradient for each edge incident on key
|
||||
BOOST_FOREACH(const size_t& factorId, adjEdgesMap.at(key)){
|
||||
Rot3 Rij = factorId2RotMap.at(factorId);
|
||||
Rot3 Ri = inverseRot.at<Rot3>(key);
|
||||
if( key == (pose3Graph.at(factorId))->keys()[0] ){
|
||||
Key key1 = (pose3Graph.at(factorId))->keys()[1];
|
||||
Rot3 Rj = inverseRot.at<Rot3>(key1);
|
||||
gradKey = gradKey + gradientTron(Ri, Rij * Rj, a, b);
|
||||
//std::cout << "key1 " << DefaultKeyFormatter(key1) << " gradientTron(Ri, Rij * Rj, a, b) \n " << gradientTron(Ri, Rij * Rj, a, b) << std::endl;
|
||||
}else if( key == (pose3Graph.at(factorId))->keys()[1] ){
|
||||
Key key0 = (pose3Graph.at(factorId))->keys()[0];
|
||||
Rot3 Rj = inverseRot.at<Rot3>(key0);
|
||||
gradKey = gradKey + gradientTron(Ri, Rij.between(Rj), a, b);
|
||||
//std::cout << "key0 " << DefaultKeyFormatter(key0) << " gradientTron(Ri, Rij.inverse() * Rj, a, b) \n " << gradientTron(Ri, Rij.between(Rj), a, b) << std::endl;
|
||||
}else{
|
||||
std::cout << "Error in gradient computation" << std::endl;
|
||||
}
|
||||
} // end of i-th gradient computation
|
||||
grad.at(key) = stepsize * gradKey;
|
||||
|
||||
double normGradKey = (gradKey).norm();
|
||||
//std::cout << "key " << DefaultKeyFormatter(key) <<" \n grad \n" << grad.at(key) << std::endl;
|
||||
if(normGradKey>maxGrad)
|
||||
maxGrad = normGradKey;
|
||||
} // end of loop over nodes
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// update estimates
|
||||
inverseRot = inverseRot.retract(grad);
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// check stopping condition
|
||||
if (it>20 && maxGrad < 5e-3)
|
||||
break;
|
||||
} // enf of gradient iterations
|
||||
|
||||
std::cout << "nr of gradient iterations " << it << "maxGrad " << maxGrad << std::endl;
|
||||
|
||||
// Return correct rotations
|
||||
const Rot3& Rref = inverseRot.at<Rot3>(keyAnchor); // This will be set to the identity as so far we included no prior
|
||||
Values estimateRot;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, inverseRot) {
|
||||
Key key = key_value.key;
|
||||
if (key != keyAnchor) {
|
||||
const Rot3& R = inverseRot.at<Rot3>(key);
|
||||
if(setRefFrame)
|
||||
estimateRot.insert(key, Rref.compose(R.inverse()));
|
||||
else
|
||||
estimateRot.insert(key, R.inverse());
|
||||
}
|
||||
}
|
||||
return estimateRot;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap, const NonlinearFactorGraph& pose3Graph){
|
||||
size_t factorId = 0;
|
||||
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, pose3Graph) {
|
||||
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
|
||||
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
|
||||
if (pose3Between){
|
||||
Rot3 Rij = pose3Between->measured().rotation();
|
||||
factorId2RotMap.insert(pair<Key, Rot3 >(factorId,Rij));
|
||||
|
||||
Key key1 = pose3Between->key1();
|
||||
if (adjEdgesMap.find(key1) != adjEdgesMap.end()){ // key is already in
|
||||
adjEdgesMap.at(key1).push_back(factorId);
|
||||
}else{
|
||||
vector<size_t> edge_id;
|
||||
edge_id.push_back(factorId);
|
||||
adjEdgesMap.insert(pair<Key, vector<size_t> >(key1, edge_id));
|
||||
}
|
||||
Key key2 = pose3Between->key2();
|
||||
if (adjEdgesMap.find(key2) != adjEdgesMap.end()){ // key is already in
|
||||
adjEdgesMap.at(key2).push_back(factorId);
|
||||
}else{
|
||||
vector<size_t> edge_id;
|
||||
edge_id.push_back(factorId);
|
||||
adjEdgesMap.insert(pair<Key, vector<size_t> >(key2, edge_id));
|
||||
}
|
||||
}else{
|
||||
std::cout << "Error in computeOrientationsGradient" << std::endl;
|
||||
}
|
||||
factorId++;
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const double b) {
|
||||
Vector3 logRot = Rot3::Logmap(R1.between(R2));
|
||||
|
||||
double th = logRot.norm();
|
||||
if(th != th){ // the second case means that th = nan (logRot does not work well for +/-pi)
|
||||
Rot3 R1pert = R1.compose( Rot3::Expmap((Vector(3)<< 0.01, 0.01, 0.01)) ); // some perturbation
|
||||
logRot = Rot3::Logmap(R1pert.between(R2));
|
||||
th = logRot.norm();
|
||||
}
|
||||
// exclude small or invalid rotations
|
||||
if (th > 1e-5 && th == th){ // nonzero valid rotations
|
||||
logRot = logRot / th;
|
||||
}else{
|
||||
logRot = Vector3::Zero();
|
||||
th = 0.0;
|
||||
}
|
||||
|
||||
double fdot = a*b*th*exp(-b*th);
|
||||
return fdot*logRot;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values initializeOrientations(const NonlinearFactorGraph& graph) {
|
||||
|
||||
// We "extract" the Pose3 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose3Graph = buildPose3graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
return computeOrientationsChordal(pose3Graph);
|
||||
}
|
||||
|
||||
///* ************************************************************************* */
|
||||
Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot) {
|
||||
gttic(InitializePose3_computePoses);
|
||||
|
||||
// put into Values structure
|
||||
Values initialPose;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, initialRot){
|
||||
Key key = key_value.key;
|
||||
const Rot3& rot = initialRot.at<Rot3>(key);
|
||||
Pose3 initializedPose = Pose3(rot, Point3());
|
||||
initialPose.insert(key, initializedPose);
|
||||
}
|
||||
// add prior
|
||||
noiseModel::Unit::shared_ptr priorModel = noiseModel::Unit::Create(6);
|
||||
initialPose.insert(keyAnchor, Pose3());
|
||||
pose3graph.add(PriorFactor<Pose3>(keyAnchor, Pose3(), priorModel));
|
||||
|
||||
// Create optimizer
|
||||
GaussNewtonParams params;
|
||||
bool singleIter = true;
|
||||
if(singleIter){
|
||||
params.maxIterations = 1;
|
||||
}else{
|
||||
std::cout << " \n\n\n\n performing more than 1 GN iterations \n\n\n" <<std::endl;
|
||||
params.setVerbosity("TERMINATION");
|
||||
}
|
||||
GaussNewtonOptimizer optimizer(pose3graph, initialPose, params);
|
||||
Values GNresult = optimizer.optimize();
|
||||
|
||||
// put into Values structure
|
||||
Values estimate;
|
||||
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, GNresult) {
|
||||
Key key = key_value.key;
|
||||
if (key != keyAnchor) {
|
||||
const Pose3& pose = GNresult.at<Pose3>(key);
|
||||
estimate.insert(key, pose);
|
||||
}
|
||||
}
|
||||
return estimate;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values initialize(const NonlinearFactorGraph& graph) {
|
||||
gttic(InitializePose3_initialize);
|
||||
|
||||
// We "extract" the Pose3 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose3Graph = buildPose3graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
Values valueRot3 = computeOrientationsChordal(pose3Graph);
|
||||
|
||||
// Compute the full poses (1 GN iteration on full poses)
|
||||
return computePoses(pose3Graph, valueRot3);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Values initialize(const NonlinearFactorGraph& graph, const Values& givenGuess, bool useGradient) {
|
||||
Values initialValues;
|
||||
|
||||
// We "extract" the Pose3 subgraph of the original graph: this
|
||||
// is done to properly model priors and avoiding operating on a larger graph
|
||||
NonlinearFactorGraph pose3Graph = buildPose3graph(graph);
|
||||
|
||||
// Get orientations from relative orientation measurements
|
||||
Values orientations;
|
||||
if(useGradient)
|
||||
orientations = computeOrientationsGradient(pose3Graph, givenGuess);
|
||||
else
|
||||
orientations = computeOrientationsChordal(pose3Graph);
|
||||
|
||||
// orientations.print("orientations\n");
|
||||
|
||||
// Compute the full poses (1 GN iteration on full poses)
|
||||
return computePoses(pose3Graph, orientations);
|
||||
|
||||
// BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, orientations) {
|
||||
// Key key = key_value.key;
|
||||
// if (key != keyAnchor) {
|
||||
// const Point3& pos = givenGuess.at<Pose3>(key).translation();
|
||||
// const Rot3& rot = orientations.at<Rot3>(key);
|
||||
// Pose3 initializedPoses = Pose3(rot, pos);
|
||||
// initialValues.insert(key, initializedPoses);
|
||||
// }
|
||||
// }
|
||||
// return initialValues;
|
||||
}
|
||||
|
||||
} // end of namespace lago
|
||||
} // end of namespace gtsam
|
|
@ -0,0 +1,59 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file InitializePose3.h
|
||||
* @brief Initialize Pose3 in a factor graph
|
||||
*
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
* @date August, 2014
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/inference/graph.h>
|
||||
#include <gtsam/geometry/Rot3.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
typedef std::map<Key, std::vector<size_t> > KeyVectorMap;
|
||||
typedef std::map<Key, Rot3 > KeyRotMap;
|
||||
|
||||
namespace InitializePose3 {
|
||||
|
||||
GTSAM_EXPORT GaussianFactorGraph buildLinearOrientationGraph(const NonlinearFactorGraph& g);
|
||||
|
||||
GTSAM_EXPORT Values normalizeRelaxedRotations(const VectorValues& relaxedRot3);
|
||||
|
||||
GTSAM_EXPORT Values computeOrientationsChordal(const NonlinearFactorGraph& pose3Graph);
|
||||
|
||||
GTSAM_EXPORT Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph,
|
||||
const Values& givenGuess, size_t maxIter = 10000, const bool setRefFrame = true);
|
||||
|
||||
GTSAM_EXPORT void createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap,
|
||||
const NonlinearFactorGraph& pose3Graph);
|
||||
|
||||
GTSAM_EXPORT Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const double b);
|
||||
|
||||
GTSAM_EXPORT NonlinearFactorGraph buildPose3graph(const NonlinearFactorGraph& graph);
|
||||
|
||||
GTSAM_EXPORT Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot);
|
||||
|
||||
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph);
|
||||
|
||||
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph, const Values& givenGuess, bool useGradient = false);
|
||||
|
||||
} // end of namespace lago
|
||||
} // end of namespace gtsam
|
|
@ -77,7 +77,7 @@ public:
|
|||
(*H).middleCols(rotInterval.first, rDim).setIdentity(rDim, rDim);
|
||||
}
|
||||
|
||||
return Rotation::Logmap(newR) - Rotation::Logmap(measured_);
|
||||
return measured_.localCoordinates(newR);
|
||||
}
|
||||
|
||||
private:
|
||||
|
|
|
@ -101,6 +101,25 @@ static SharedNoiseModel readNoiseModel(ifstream& is, bool smart,
|
|||
double v1, v2, v3, v4, v5, v6;
|
||||
is >> v1 >> v2 >> v3 >> v4 >> v5 >> v6;
|
||||
|
||||
if (noiseFormat == NoiseFormatAUTO)
|
||||
{
|
||||
// Try to guess covariance matrix layout
|
||||
if(v1 != 0.0 && v2 == 0.0 && v3 != 0.0 && v4 != 0.0 && v5 == 0.0 && v6 == 0.0)
|
||||
{
|
||||
// NoiseFormatGRAPH
|
||||
noiseFormat = NoiseFormatGRAPH;
|
||||
}
|
||||
else if(v1 != 0.0 && v2 == 0.0 && v3 == 0.0 && v4 != 0.0 && v5 == 0.0 && v6 != 0.0)
|
||||
{
|
||||
// NoiseFormatCOV
|
||||
noiseFormat = NoiseFormatCOV;
|
||||
}
|
||||
else
|
||||
{
|
||||
throw std::invalid_argument("load2D: unrecognized covariance matrix format in dataset file. Please specify the noise format.");
|
||||
}
|
||||
}
|
||||
|
||||
// Read matrix and check that diagonal entries are non-zero
|
||||
Matrix M(3, 3);
|
||||
switch (noiseFormat) {
|
||||
|
@ -162,7 +181,7 @@ static SharedNoiseModel readNoiseModel(ifstream& is, bool smart,
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
GraphAndValues load2D(const string& filename, SharedNoiseModel model, int maxID,
|
||||
GraphAndValues load2D(const string& filename, SharedNoiseModel model, Key maxID,
|
||||
bool addNoise, bool smart, NoiseFormat noiseFormat,
|
||||
KernelFunctionType kernelFunctionType) {
|
||||
|
||||
|
@ -210,7 +229,7 @@ GraphAndValues load2D(const string& filename, SharedNoiseModel model, int maxID,
|
|||
}
|
||||
|
||||
// Parse the pose constraints
|
||||
int id1, id2;
|
||||
Key id1, id2;
|
||||
bool haveLandmark = false;
|
||||
while (!is.eof()) {
|
||||
if (!(is >> tag))
|
||||
|
|
|
@ -57,7 +57,8 @@ enum NoiseFormat {
|
|||
NoiseFormatG2O, ///< Information matrix I11, I12, I13, I22, I23, I33
|
||||
NoiseFormatTORO, ///< Information matrix, but inf_ff inf_fs inf_ss inf_rr inf_fr inf_sr
|
||||
NoiseFormatGRAPH, ///< default: toro-style order, but covariance matrix !
|
||||
NoiseFormatCOV ///< Covariance matrix C11, C12, C13, C22, C23, C33
|
||||
NoiseFormatCOV, ///< Covariance matrix C11, C12, C13, C22, C23, C33
|
||||
NoiseFormatAUTO ///< Try to guess covariance matrix layout
|
||||
};
|
||||
|
||||
/// Robust kernel type to wrap around quadratic noise model
|
||||
|
@ -79,7 +80,7 @@ GTSAM_EXPORT GraphAndValues load2D(
|
|||
std::pair<std::string, SharedNoiseModel> dataset, int maxID = 0,
|
||||
bool addNoise = false,
|
||||
bool smart = true, //
|
||||
NoiseFormat noiseFormat = NoiseFormatGRAPH,
|
||||
NoiseFormat noiseFormat = NoiseFormatAUTO,
|
||||
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
|
||||
|
||||
/**
|
||||
|
@ -94,8 +95,8 @@ GTSAM_EXPORT GraphAndValues load2D(
|
|||
* @return graph and initial values
|
||||
*/
|
||||
GTSAM_EXPORT GraphAndValues load2D(const std::string& filename,
|
||||
SharedNoiseModel model = SharedNoiseModel(), int maxID = 0, bool addNoise =
|
||||
false, bool smart = true, NoiseFormat noiseFormat = NoiseFormatGRAPH, //
|
||||
SharedNoiseModel model = SharedNoiseModel(), Key maxID = 0, bool addNoise =
|
||||
false, bool smart = true, NoiseFormat noiseFormat = NoiseFormatAUTO, //
|
||||
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
|
||||
|
||||
/// @deprecated load2D now allows for arbitrary models and wrapping a robust kernel
|
||||
|
|
|
@ -56,6 +56,17 @@ TEST( dataSet, load2D)
|
|||
EXPECT(assert_equal(expected, *actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( dataSet, load2DVictoriaPark)
|
||||
{
|
||||
const string filename = findExampleDataFile("victoria_park.txt");
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
boost::tie(graph, initial) = load2D(filename);
|
||||
EXPECT_LONGS_EQUAL(10608,graph->size());
|
||||
EXPECT_LONGS_EQUAL(7120,initial->size());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( dataSet, Balbianello)
|
||||
{
|
||||
|
|
|
@ -0,0 +1,259 @@
|
|||
/**
|
||||
* @file testImplicitSchurFactor.cpp
|
||||
* @brief unit test implicit jacobian factors
|
||||
* @author Frank Dellaert
|
||||
* @date Oct 20, 2013
|
||||
*/
|
||||
|
||||
//#include <gtsam_unstable/slam/ImplicitSchurFactor.h>
|
||||
#include <gtsam/slam/ImplicitSchurFactor.h>
|
||||
//#include <gtsam_unstable/slam/JacobianFactorQ.h>
|
||||
#include <gtsam/slam/JacobianFactorQ.h>
|
||||
//#include "gtsam_unstable/slam/JacobianFactorQR.h"
|
||||
#include "gtsam/slam/JacobianFactorQR.h"
|
||||
|
||||
#include <gtsam/base/timing.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
#include <boost/assign/std/vector.hpp>
|
||||
#include <boost/range/iterator_range.hpp>
|
||||
#include <boost/range/adaptor/map.hpp>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace boost::assign;
|
||||
using namespace gtsam;
|
||||
|
||||
// F
|
||||
typedef Eigen::Matrix<double, 2, 6> Matrix26;
|
||||
const Matrix26 F0 = Matrix26::Ones();
|
||||
const Matrix26 F1 = 2 * Matrix26::Ones();
|
||||
const Matrix26 F3 = 3 * Matrix26::Ones();
|
||||
const vector<pair<Key, Matrix26> > Fblocks = list_of<pair<Key, Matrix> > //
|
||||
(make_pair(0, F0))(make_pair(1, F1))(make_pair(3, F3));
|
||||
// RHS and sigmas
|
||||
const Vector b = (Vector(6) << 1., 2., 3., 4., 5., 6.);
|
||||
|
||||
//*************************************************************************************
|
||||
TEST( implicitSchurFactor, creation ) {
|
||||
// Matrix E = Matrix::Ones(6,3);
|
||||
Matrix E = zeros(6, 3);
|
||||
E.block<2,2>(0, 0) = eye(2);
|
||||
E.block<2,3>(2, 0) = 2 * ones(2, 3);
|
||||
Matrix3 P = (E.transpose() * E).inverse();
|
||||
ImplicitSchurFactor<6> expected(Fblocks, E, P, b);
|
||||
Matrix expectedP = expected.getPointCovariance();
|
||||
EXPECT(assert_equal(expectedP, P));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( implicitSchurFactor, addHessianMultiply ) {
|
||||
|
||||
Matrix E = zeros(6, 3);
|
||||
E.block<2,2>(0, 0) = eye(2);
|
||||
E.block<2,3>(2, 0) = 2 * ones(2, 3);
|
||||
E.block<2,2>(4, 1) = eye(2);
|
||||
Matrix3 P = (E.transpose() * E).inverse();
|
||||
|
||||
double alpha = 0.5;
|
||||
VectorValues xvalues = map_list_of //
|
||||
(0, gtsam::repeat(6, 2))//
|
||||
(1, gtsam::repeat(6, 4))//
|
||||
(2, gtsam::repeat(6, 0))// distractor
|
||||
(3, gtsam::repeat(6, 8));
|
||||
|
||||
VectorValues yExpected = map_list_of//
|
||||
(0, gtsam::repeat(6, 27))//
|
||||
(1, gtsam::repeat(6, -40))//
|
||||
(2, gtsam::repeat(6, 0))// distractor
|
||||
(3, gtsam::repeat(6, 279));
|
||||
|
||||
// Create full F
|
||||
size_t M=4, m = 3, d = 6;
|
||||
Matrix F(2 * m, d * M);
|
||||
F << F0, zeros(2, d * 3), zeros(2, d), F1, zeros(2, d*2), zeros(2, d * 3), F3;
|
||||
|
||||
// Calculate expected result F'*alpha*(I - E*P*E')*F*x
|
||||
FastVector<Key> keys;
|
||||
keys += 0,1,2,3;
|
||||
Vector x = xvalues.vector(keys);
|
||||
Vector expected = zero(24);
|
||||
ImplicitSchurFactor<6>::multiplyHessianAdd(F, E, P, alpha, x, expected);
|
||||
EXPECT(assert_equal(expected, yExpected.vector(keys), 1e-8));
|
||||
|
||||
// Create ImplicitSchurFactor
|
||||
ImplicitSchurFactor<6> implicitFactor(Fblocks, E, P, b);
|
||||
|
||||
VectorValues zero = 0 * yExpected;// quick way to get zero w right structure
|
||||
{ // First Version
|
||||
VectorValues yActual = zero;
|
||||
implicitFactor.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(yExpected, yActual, 1e-8));
|
||||
implicitFactor.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(2 * yExpected, yActual, 1e-8));
|
||||
implicitFactor.multiplyHessianAdd(-1, xvalues, yActual);
|
||||
EXPECT(assert_equal(zero, yActual, 1e-8));
|
||||
}
|
||||
|
||||
typedef Eigen::Matrix<double, 24, 1> DeltaX;
|
||||
typedef Eigen::Map<DeltaX> XMap;
|
||||
double* y = new double[24];
|
||||
double* xdata = x.data();
|
||||
|
||||
{ // Raw memory Version
|
||||
std::fill(y, y + 24, 0);// zero y !
|
||||
implicitFactor.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(expected, XMap(y), 1e-8));
|
||||
implicitFactor.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(Vector(2 * expected), XMap(y), 1e-8));
|
||||
implicitFactor.multiplyHessianAdd(-1, xdata, y);
|
||||
EXPECT(assert_equal(Vector(0 * expected), XMap(y), 1e-8));
|
||||
}
|
||||
|
||||
// Create JacobianFactor with same error
|
||||
const SharedDiagonal model;
|
||||
JacobianFactorQ<6> jf(Fblocks, E, P, b, model);
|
||||
|
||||
{ // error
|
||||
double expectedError = jf.error(xvalues);
|
||||
double actualError = implicitFactor.errorJF(xvalues);
|
||||
DOUBLES_EQUAL(expectedError,actualError,1e-7)
|
||||
}
|
||||
|
||||
{ // JacobianFactor with same error
|
||||
VectorValues yActual = zero;
|
||||
jf.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(yExpected, yActual, 1e-8));
|
||||
jf.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(2 * yExpected, yActual, 1e-8));
|
||||
jf.multiplyHessianAdd(-1, xvalues, yActual);
|
||||
EXPECT(assert_equal(zero, yActual, 1e-8));
|
||||
}
|
||||
|
||||
{ // check hessian Diagonal
|
||||
VectorValues diagExpected = jf.hessianDiagonal();
|
||||
VectorValues diagActual = implicitFactor.hessianDiagonal();
|
||||
EXPECT(assert_equal(diagExpected, diagActual, 1e-8));
|
||||
}
|
||||
|
||||
{ // check hessian Block Diagonal
|
||||
map<Key,Matrix> BD = jf.hessianBlockDiagonal();
|
||||
map<Key,Matrix> actualBD = implicitFactor.hessianBlockDiagonal();
|
||||
LONGS_EQUAL(3,actualBD.size());
|
||||
EXPECT(assert_equal(BD[0],actualBD[0]));
|
||||
EXPECT(assert_equal(BD[1],actualBD[1]));
|
||||
EXPECT(assert_equal(BD[3],actualBD[3]));
|
||||
}
|
||||
|
||||
{ // Raw memory Version
|
||||
std::fill(y, y + 24, 0);// zero y !
|
||||
jf.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(expected, XMap(y), 1e-8));
|
||||
jf.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(Vector(2 * expected), XMap(y), 1e-8));
|
||||
jf.multiplyHessianAdd(-1, xdata, y);
|
||||
EXPECT(assert_equal(Vector(0 * expected), XMap(y), 1e-8));
|
||||
}
|
||||
|
||||
{ // Check gradientAtZero
|
||||
VectorValues expected = jf.gradientAtZero();
|
||||
VectorValues actual = implicitFactor.gradientAtZero();
|
||||
EXPECT(assert_equal(expected, actual, 1e-8));
|
||||
}
|
||||
|
||||
// Create JacobianFactorQR
|
||||
JacobianFactorQR<6> jfq(Fblocks, E, P, b, model);
|
||||
{
|
||||
const SharedDiagonal model;
|
||||
VectorValues yActual = zero;
|
||||
jfq.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(yExpected, yActual, 1e-8));
|
||||
jfq.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(2 * yExpected, yActual, 1e-8));
|
||||
jfq.multiplyHessianAdd(-1, xvalues, yActual);
|
||||
EXPECT(assert_equal(zero, yActual, 1e-8));
|
||||
}
|
||||
|
||||
{ // Raw memory Version
|
||||
std::fill(y, y + 24, 0);// zero y !
|
||||
jfq.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(expected, XMap(y), 1e-8));
|
||||
jfq.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(Vector(2 * expected), XMap(y), 1e-8));
|
||||
jfq.multiplyHessianAdd(-1, xdata, y);
|
||||
EXPECT(assert_equal(Vector(0 * expected), XMap(y), 1e-8));
|
||||
}
|
||||
delete [] y;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(implicitSchurFactor, hessianDiagonal)
|
||||
{
|
||||
/* TESTED AGAINST MATLAB
|
||||
* F = [ones(2,6) zeros(2,6) zeros(2,6)
|
||||
zeros(2,6) 2*ones(2,6) zeros(2,6)
|
||||
zeros(2,6) zeros(2,6) 3*ones(2,6)]
|
||||
E = [[1:6] [1:6] [0.5 1:5]];
|
||||
E = reshape(E',3,6)'
|
||||
P = inv(E' * E)
|
||||
H = F' * (eye(6) - E * P * E') * F
|
||||
diag(H)
|
||||
*/
|
||||
Matrix E(6,3);
|
||||
E.block<2,3>(0, 0) << 1,2,3,4,5,6;
|
||||
E.block<2,3>(2, 0) << 1,2,3,4,5,6;
|
||||
E.block<2,3>(4, 0) << 0.5,1,2,3,4,5;
|
||||
Matrix3 P = (E.transpose() * E).inverse();
|
||||
ImplicitSchurFactor<6> factor(Fblocks, E, P, b);
|
||||
|
||||
// hessianDiagonal
|
||||
VectorValues expected;
|
||||
expected.insert(0, 1.195652*ones(6));
|
||||
expected.insert(1, 4.782608*ones(6));
|
||||
expected.insert(3, 7.043478*ones(6));
|
||||
EXPECT(assert_equal(expected, factor.hessianDiagonal(),1e-5));
|
||||
|
||||
// hessianBlockDiagonal
|
||||
map<Key,Matrix> actualBD = factor.hessianBlockDiagonal();
|
||||
LONGS_EQUAL(3,actualBD.size());
|
||||
Matrix FtE0 = F0.transpose() * E.block<2,3>(0, 0);
|
||||
Matrix FtE1 = F1.transpose() * E.block<2,3>(2, 0);
|
||||
Matrix FtE3 = F3.transpose() * E.block<2,3>(4, 0);
|
||||
|
||||
// variant one
|
||||
EXPECT(assert_equal(F0.transpose()*F0-FtE0*P*FtE0.transpose(),actualBD[0]));
|
||||
EXPECT(assert_equal(F1.transpose()*F1-FtE1*P*FtE1.transpose(),actualBD[1]));
|
||||
EXPECT(assert_equal(F3.transpose()*F3-FtE3*P*FtE3.transpose(),actualBD[3]));
|
||||
|
||||
// variant two
|
||||
Matrix I2 = eye(2);
|
||||
Matrix E0 = E.block<2,3>(0, 0);
|
||||
Matrix F0t = F0.transpose();
|
||||
EXPECT(assert_equal(F0t*F0-F0t*E0*P*E0.transpose()*F0,actualBD[0]));
|
||||
EXPECT(assert_equal(F0t*(F0-E0*P*E0.transpose()*F0),actualBD[0]));
|
||||
|
||||
Matrix M1 = F0t*(F0-E0*P*E0.transpose()*F0);
|
||||
Matrix M2 = F0t*F0-F0t*E0*P*E0.transpose()*F0;
|
||||
|
||||
EXPECT(assert_equal( M1 , actualBD[0] ));
|
||||
EXPECT(assert_equal( M1 , M2 ));
|
||||
|
||||
Matrix M1b = F0t*(E0*P*E0.transpose()*F0);
|
||||
Matrix M2b = F0t*E0*P*E0.transpose()*F0;
|
||||
EXPECT(assert_equal( M1b , M2b ));
|
||||
|
||||
EXPECT(assert_equal(F0t*(I2-E0*P*E0.transpose())*F0,actualBD[0]));
|
||||
EXPECT(assert_equal(F1.transpose()*F1-FtE1*P*FtE1.transpose(),actualBD[1]));
|
||||
EXPECT(assert_equal(F3.transpose()*F3-FtE3*P*FtE3.transpose(),actualBD[3]));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(void) {
|
||||
TestResult tr;
|
||||
int result = TestRegistry::runAllTests(tr);
|
||||
return result;
|
||||
}
|
||||
//*************************************************************************************
|
|
@ -0,0 +1,259 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testInitializePose3.cpp
|
||||
* @brief Unit tests for 3D SLAM initialization, using rotation relaxation
|
||||
*
|
||||
* @author Luca Carlone
|
||||
* @author Frank Dellaert
|
||||
* @date August, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/InitializePose3.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <cmath>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace boost::assign;
|
||||
|
||||
static Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
|
||||
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(6, 0.1));
|
||||
|
||||
namespace simple {
|
||||
// We consider a small graph:
|
||||
// symbolic FG
|
||||
// x2 0 1
|
||||
// / | \ 1 2
|
||||
// / | \ 2 3
|
||||
// x3 | x1 2 0
|
||||
// \ | / 0 3
|
||||
// \ | /
|
||||
// x0
|
||||
//
|
||||
static Point3 p0 = Point3(0,0,0);
|
||||
static Rot3 R0 = Rot3::Expmap( ( Vector(3) << 0.0,0.0,0.0 ) );
|
||||
static Point3 p1 = Point3(1,2,0);
|
||||
static Rot3 R1 = Rot3::Expmap( ( Vector(3) << 0.0,0.0,1.570796 ) );
|
||||
static Point3 p2 = Point3(0,2,0);
|
||||
static Rot3 R2 = Rot3::Expmap( ( Vector(3) << 0.0,0.0,3.141593 ) );
|
||||
static Point3 p3 = Point3(-1,1,0);
|
||||
static Rot3 R3 = Rot3::Expmap( ( Vector(3) << 0.0,0.0,4.712389 ) );
|
||||
|
||||
static Pose3 pose0 = Pose3(R0,p0);
|
||||
static Pose3 pose1 = Pose3(R1,p1);
|
||||
static Pose3 pose2 = Pose3(R2,p2);
|
||||
static Pose3 pose3 = Pose3(R3,p3);
|
||||
|
||||
NonlinearFactorGraph graph() {
|
||||
NonlinearFactorGraph g;
|
||||
g.add(BetweenFactor<Pose3>(x0, x1, pose0.between(pose1), model));
|
||||
g.add(BetweenFactor<Pose3>(x1, x2, pose1.between(pose2), model));
|
||||
g.add(BetweenFactor<Pose3>(x2, x3, pose2.between(pose3), model));
|
||||
g.add(BetweenFactor<Pose3>(x2, x0, pose2.between(pose0), model));
|
||||
g.add(BetweenFactor<Pose3>(x0, x3, pose0.between(pose3), model));
|
||||
g.add(PriorFactor<Pose3>(x0, pose0, model));
|
||||
return g;
|
||||
}
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, buildPose3graph ) {
|
||||
NonlinearFactorGraph pose3graph = InitializePose3::buildPose3graph(simple::graph());
|
||||
// pose3graph.print("");
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, orientations ) {
|
||||
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph());
|
||||
|
||||
Values initial = InitializePose3::computeOrientationsChordal(pose3Graph);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal(simple::R0, initial.at<Rot3>(x0), 1e-6));
|
||||
EXPECT(assert_equal(simple::R1, initial.at<Rot3>(x1), 1e-6));
|
||||
EXPECT(assert_equal(simple::R2, initial.at<Rot3>(x2), 1e-6));
|
||||
EXPECT(assert_equal(simple::R3, initial.at<Rot3>(x3), 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, orientationsGradientSymbolicGraph ) {
|
||||
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph());
|
||||
|
||||
KeyVectorMap adjEdgesMap;
|
||||
KeyRotMap factorId2RotMap;
|
||||
|
||||
InitializePose3::createSymbolicGraph(adjEdgesMap, factorId2RotMap, pose3Graph);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x0)[0], 0, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x0)[1], 3, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x0)[2], 4, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x0)[3], 5, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x0).size(), 4, 1e-9);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x1)[0], 0, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x1)[1], 1, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x1).size(), 2, 1e-9);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x2)[0], 1, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x2)[1], 2, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x2)[2], 3, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x2).size(), 3, 1e-9);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x3)[0], 2, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x3)[1], 4, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.at(x3).size(), 2, 1e-9);
|
||||
|
||||
// This includes the anchor
|
||||
EXPECT_DOUBLES_EQUAL(adjEdgesMap.size(), 5, 1e-9);
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, singleGradient ) {
|
||||
Rot3 R1 = Rot3();
|
||||
Matrix M = Matrix3::Zero();
|
||||
M(0,1) = -1; M(1,0) = 1; M(2,2) = 1;
|
||||
Rot3 R2 = Rot3(M);
|
||||
double a = 6.010534238540223;
|
||||
double b = 1.0;
|
||||
|
||||
Vector actual = InitializePose3::gradientTron(R1, R2, a, b);
|
||||
Vector expected = Vector3::Zero();
|
||||
expected(2) = 1.962658662803917;
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, iterationGradient ) {
|
||||
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph());
|
||||
|
||||
// Wrong initial guess - initialization should fix the rotations
|
||||
Rot3 Rpert = Rot3::Expmap((Vector(3)<< 0.01, 0.01, 0.01));
|
||||
Values givenPoses;
|
||||
givenPoses.insert(x0,simple::pose0);
|
||||
givenPoses.insert(x1,(simple::pose0).compose( Pose3(Rpert,Point3()) ));
|
||||
givenPoses.insert(x2, (simple::pose0).compose( Pose3(Rpert.inverse(),Point3()) ));
|
||||
givenPoses.insert(x3, (simple::pose0).compose( Pose3(Rpert,Point3()) ));
|
||||
|
||||
size_t maxIter = 1; // test gradient at the first iteration
|
||||
bool setRefFrame = false;
|
||||
Values orientations = InitializePose3::computeOrientationsGradient(pose3Graph, givenPoses, maxIter, setRefFrame);
|
||||
|
||||
Matrix M0 = (Matrix(3,3) << 0.999435813876064, -0.033571481675497, 0.001004768630281,
|
||||
0.033572116359134, 0.999436104312325, -0.000621610948719,
|
||||
-0.000983333645009, 0.000654992453817, 0.999999302019670);
|
||||
Rot3 R0Expected = Rot3(M0);
|
||||
EXPECT(assert_equal(R0Expected, orientations.at<Rot3>(x0), 1e-5));
|
||||
|
||||
Matrix M1 = (Matrix(3,3) << 0.999905367545392, -0.010866391403031, 0.008436675399114,
|
||||
0.010943459008004, 0.999898317528125, -0.009143047050380,
|
||||
-0.008336465609239, 0.009234508232789, 0.999922610604863);
|
||||
Rot3 R1Expected = Rot3(M1);
|
||||
EXPECT(assert_equal(R1Expected, orientations.at<Rot3>(x1), 1e-5));
|
||||
|
||||
Matrix M2 = (Matrix(3,3) << 0.998936644682875, 0.045376417678595, -0.008158469732553,
|
||||
-0.045306446926148, 0.998936408933058, 0.008566024448664,
|
||||
0.008538487960253, -0.008187284445083, 0.999930028850403);
|
||||
Rot3 R2Expected = Rot3(M2);
|
||||
EXPECT(assert_equal(R2Expected, orientations.at<Rot3>(x2), 1e-5));
|
||||
|
||||
Matrix M3 = (Matrix(3,3) << 0.999898767273093, -0.010834701971459, 0.009223038487275,
|
||||
0.010911315499947, 0.999906044037258, -0.008297366559388,
|
||||
-0.009132272433995, 0.008397162077148, 0.999923041673329);
|
||||
Rot3 R3Expected = Rot3(M3);
|
||||
EXPECT(assert_equal(R3Expected, orientations.at<Rot3>(x3), 1e-5));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, orientationsGradient ) {
|
||||
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph());
|
||||
|
||||
// Wrong initial guess - initialization should fix the rotations
|
||||
Rot3 Rpert = Rot3::Expmap((Vector(3)<< 0.01, 0.01, 0.01));
|
||||
Values givenPoses;
|
||||
givenPoses.insert(x0,simple::pose0);
|
||||
givenPoses.insert(x1,(simple::pose0).compose( Pose3(Rpert,Point3()) ));
|
||||
givenPoses.insert(x2, (simple::pose0).compose( Pose3(Rpert.inverse(),Point3()) ));
|
||||
givenPoses.insert(x3, (simple::pose0).compose( Pose3(Rpert,Point3()) ));
|
||||
// do 10 gradient iterations
|
||||
bool setRefFrame = false;
|
||||
Values orientations = InitializePose3::computeOrientationsGradient(pose3Graph, givenPoses, 10, setRefFrame);
|
||||
|
||||
// const Key keyAnchor = symbol('Z', 9999999);
|
||||
// givenPoses.insert(keyAnchor,simple::pose0);
|
||||
// string g2oFile = "/home/aspn/Desktop/toyExample.g2o";
|
||||
// writeG2o(pose3Graph, givenPoses, g2oFile);
|
||||
|
||||
const string matlabResultsfile = findExampleDataFile("simpleGraph10gradIter");
|
||||
NonlinearFactorGraph::shared_ptr matlabGraph;
|
||||
Values::shared_ptr matlabValues;
|
||||
bool is3D = true;
|
||||
boost::tie(matlabGraph, matlabValues) = readG2o(matlabResultsfile, is3D);
|
||||
|
||||
Rot3 R0Expected = matlabValues->at<Pose3>(1).rotation();
|
||||
EXPECT(assert_equal(R0Expected, orientations.at<Rot3>(x0), 1e-4));
|
||||
|
||||
Rot3 R1Expected = matlabValues->at<Pose3>(2).rotation();
|
||||
EXPECT(assert_equal(R1Expected, orientations.at<Rot3>(x1), 1e-4));
|
||||
|
||||
Rot3 R2Expected = matlabValues->at<Pose3>(3).rotation();
|
||||
EXPECT(assert_equal(R2Expected, orientations.at<Rot3>(x2), 1e-3));
|
||||
|
||||
Rot3 R3Expected = matlabValues->at<Pose3>(4).rotation();
|
||||
EXPECT(assert_equal(R3Expected, orientations.at<Rot3>(x3), 1e-4));
|
||||
}
|
||||
|
||||
/* *************************************************************************** */
|
||||
TEST( InitializePose3, posesWithGivenGuess ) {
|
||||
Values givenPoses;
|
||||
givenPoses.insert(x0,simple::pose0);
|
||||
givenPoses.insert(x1,simple::pose1);
|
||||
givenPoses.insert(x2,simple::pose2);
|
||||
givenPoses.insert(x3,simple::pose3);
|
||||
|
||||
Values initial = InitializePose3::initialize(simple::graph(), givenPoses);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal(givenPoses, initial, 1e-6));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( InitializePose3, initializePoses )
|
||||
{
|
||||
const string g2oFile = findExampleDataFile("pose3example-grid");
|
||||
NonlinearFactorGraph::shared_ptr inputGraph;
|
||||
Values::shared_ptr expectedValues;
|
||||
bool is3D = true;
|
||||
boost::tie(inputGraph, expectedValues) = readG2o(g2oFile, is3D);
|
||||
noiseModel::Unit::shared_ptr priorModel = noiseModel::Unit::Create(6);
|
||||
inputGraph->add(PriorFactor<Pose3>(0, Pose3(), priorModel));
|
||||
|
||||
Values initial = InitializePose3::initialize(*inputGraph);
|
||||
EXPECT(assert_equal(*expectedValues,initial,1e-4));
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -36,7 +36,7 @@ using namespace boost::assign;
|
|||
static Symbol x0('x', 0), x1('x', 1), x2('x', 2), x3('x', 3);
|
||||
static SharedNoiseModel model(noiseModel::Isotropic::Sigma(3, 0.1));
|
||||
|
||||
namespace simple {
|
||||
namespace simpleLago {
|
||||
// We consider a small graph:
|
||||
// symbolic FG
|
||||
// x2 0 1
|
||||
|
@ -67,7 +67,7 @@ NonlinearFactorGraph graph() {
|
|||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, checkSTandChords ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
|
@ -84,7 +84,7 @@ TEST( Lago, checkSTandChords ) {
|
|||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, orientationsOverSpanningTree ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
|
@ -115,7 +115,7 @@ TEST( Lago, orientationsOverSpanningTree ) {
|
|||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, regularizedMeasurements ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||
BetweenFactor<Pose2> >(g);
|
||||
|
||||
|
@ -141,7 +141,7 @@ TEST( Lago, regularizedMeasurements ) {
|
|||
/* *************************************************************************** */
|
||||
TEST( Lago, smallGraphVectorValues ) {
|
||||
bool useOdometricPath = false;
|
||||
VectorValues initial = lago::initializeOrientations(simple::graph(), useOdometricPath);
|
||||
VectorValues initial = lago::initializeOrientations(simpleLago::graph(), useOdometricPath);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
|
||||
|
@ -153,7 +153,7 @@ TEST( Lago, smallGraphVectorValues ) {
|
|||
/* *************************************************************************** */
|
||||
TEST( Lago, smallGraphVectorValuesSP ) {
|
||||
|
||||
VectorValues initial = lago::initializeOrientations(simple::graph());
|
||||
VectorValues initial = lago::initializeOrientations(simpleLago::graph());
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
EXPECT(assert_equal((Vector(1) << 0.0), initial.at(x0), 1e-6));
|
||||
|
@ -165,8 +165,8 @@ TEST( Lago, smallGraphVectorValuesSP ) {
|
|||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePosePriors ) {
|
||||
bool useOdometricPath = false;
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Pose2>(x1, simple::pose1, model));
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
g.add(PriorFactor<Pose2>(x1, simpleLago::pose1, model));
|
||||
VectorValues initial = lago::initializeOrientations(g, useOdometricPath);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
|
@ -178,8 +178,8 @@ TEST( Lago, multiplePosePriors ) {
|
|||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePosePriorsSP ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Pose2>(x1, simple::pose1, model));
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
g.add(PriorFactor<Pose2>(x1, simpleLago::pose1, model));
|
||||
VectorValues initial = lago::initializeOrientations(g);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
|
@ -192,8 +192,8 @@ TEST( Lago, multiplePosePriorsSP ) {
|
|||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePoseAndRotPriors ) {
|
||||
bool useOdometricPath = false;
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model));
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
g.add(PriorFactor<Rot2>(x1, simpleLago::pose1.theta(), model));
|
||||
VectorValues initial = lago::initializeOrientations(g, useOdometricPath);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
|
@ -205,8 +205,8 @@ TEST( Lago, multiplePoseAndRotPriors ) {
|
|||
|
||||
/* *************************************************************************** */
|
||||
TEST( Lago, multiplePoseAndRotPriorsSP ) {
|
||||
NonlinearFactorGraph g = simple::graph();
|
||||
g.add(PriorFactor<Rot2>(x1, simple::pose1.theta(), model));
|
||||
NonlinearFactorGraph g = simpleLago::graph();
|
||||
g.add(PriorFactor<Rot2>(x1, simpleLago::pose1.theta(), model));
|
||||
VectorValues initial = lago::initializeOrientations(g);
|
||||
|
||||
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
|
||||
|
@ -221,20 +221,20 @@ TEST( Lago, smallGraphValues ) {
|
|||
|
||||
// we set the orientations in the initial guess to zero
|
||||
Values initialGuess;
|
||||
initialGuess.insert(x0,Pose2(simple::pose0.x(),simple::pose0.y(),0.0));
|
||||
initialGuess.insert(x1,Pose2(simple::pose1.x(),simple::pose1.y(),0.0));
|
||||
initialGuess.insert(x2,Pose2(simple::pose2.x(),simple::pose2.y(),0.0));
|
||||
initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
|
||||
initialGuess.insert(x0,Pose2(simpleLago::pose0.x(),simpleLago::pose0.y(),0.0));
|
||||
initialGuess.insert(x1,Pose2(simpleLago::pose1.x(),simpleLago::pose1.y(),0.0));
|
||||
initialGuess.insert(x2,Pose2(simpleLago::pose2.x(),simpleLago::pose2.y(),0.0));
|
||||
initialGuess.insert(x3,Pose2(simpleLago::pose3.x(),simpleLago::pose3.y(),0.0));
|
||||
|
||||
// lago does not touch the Cartesian part and only fixed the orientations
|
||||
Values actual = lago::initialize(simple::graph(), initialGuess);
|
||||
Values actual = lago::initialize(simpleLago::graph(), initialGuess);
|
||||
|
||||
// we are in a noiseless case
|
||||
Values expected;
|
||||
expected.insert(x0,simple::pose0);
|
||||
expected.insert(x1,simple::pose1);
|
||||
expected.insert(x2,simple::pose2);
|
||||
expected.insert(x3,simple::pose3);
|
||||
expected.insert(x0,simpleLago::pose0);
|
||||
expected.insert(x1,simpleLago::pose1);
|
||||
expected.insert(x2,simpleLago::pose2);
|
||||
expected.insert(x3,simpleLago::pose3);
|
||||
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
@ -243,14 +243,14 @@ TEST( Lago, smallGraphValues ) {
|
|||
TEST( Lago, smallGraph2 ) {
|
||||
|
||||
// lago does not touch the Cartesian part and only fixed the orientations
|
||||
Values actual = lago::initialize(simple::graph());
|
||||
Values actual = lago::initialize(simpleLago::graph());
|
||||
|
||||
// we are in a noiseless case
|
||||
Values expected;
|
||||
expected.insert(x0,simple::pose0);
|
||||
expected.insert(x1,simple::pose1);
|
||||
expected.insert(x2,simple::pose2);
|
||||
expected.insert(x3,simple::pose3);
|
||||
expected.insert(x0,simpleLago::pose0);
|
||||
expected.insert(x1,simpleLago::pose1);
|
||||
expected.insert(x2,simpleLago::pose2);
|
||||
expected.insert(x3,simpleLago::pose3);
|
||||
|
||||
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||
}
|
||||
|
|
|
@ -35,6 +35,7 @@ const Rot3 rot3A, rot3B = Rot3::pitch(-M_PI_2), rot3C = Rot3::Expmap((Vector(3)
|
|||
// Pose2 examples
|
||||
const Point2 point2A(1.0, 2.0), point2B(4.0, 6.0);
|
||||
const Rot2 rot2A, rot2B = Rot2::fromAngle(M_PI_2);
|
||||
const Rot2 rot2C = Rot2::fromAngle(M_PI-0.01), rot2D = Rot2::fromAngle(M_PI+0.01);
|
||||
|
||||
/* ************************************************************************* */
|
||||
Vector evalFactorError3(const Pose3RotationPrior& factor, const Pose3& x) {
|
||||
|
@ -61,9 +62,15 @@ TEST( testPoseRotationFactor, level3_error ) {
|
|||
Pose3 pose1(rot3A, point3A);
|
||||
Pose3RotationPrior factor(poseKey, rot3C, model3);
|
||||
Matrix actH1;
|
||||
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
|
||||
EXPECT(assert_equal((Vector(3) << -0.1, -0.2,-0.3), factor.evaluateError(pose1, actH1)));
|
||||
#else
|
||||
EXPECT(assert_equal((Vector(3) << -0.1, -0.2, -0.3), factor.evaluateError(pose1, actH1),1e-2));
|
||||
#endif
|
||||
Matrix expH1 = numericalDerivative22(evalFactorError3, factor, pose1, 1e-5);
|
||||
EXPECT(assert_equal(expH1, actH1, tol));
|
||||
// the derivative is more complex, but is close to the identity for Rot3 around the origin
|
||||
// If not using true expmap will be close, but not exact around the origin
|
||||
// EXPECT(assert_equal(expH1, actH1, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -86,6 +93,16 @@ TEST( testPoseRotationFactor, level2_error ) {
|
|||
EXPECT(assert_equal(expH1, actH1, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( testPoseRotationFactor, level2_error_wrap ) {
|
||||
Pose2 pose1(rot2C, point2A);
|
||||
Pose2RotationPrior factor(poseKey, rot2D, model1);
|
||||
Matrix actH1;
|
||||
EXPECT(assert_equal((Vector(1) << -0.02), factor.evaluateError(pose1, actH1)));
|
||||
Matrix expH1 = numericalDerivative22(evalFactorError2, factor, pose1, 1e-5);
|
||||
EXPECT(assert_equal(expH1, actH1, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
||||
|
|
|
@ -0,0 +1,105 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file BiasedGPSFactor.h
|
||||
* @author Luca Carlone
|
||||
**/
|
||||
#pragma once
|
||||
|
||||
#include <ostream>
|
||||
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* A class to model GPS measurements, including a bias term which models
|
||||
* common-mode errors and that can be partially corrected if other sensors are used
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class BiasedGPSFactor: public NoiseModelFactor2<Pose3, Point3> {
|
||||
|
||||
private:
|
||||
|
||||
typedef BiasedGPSFactor This;
|
||||
typedef NoiseModelFactor2<Pose3, Point3> Base;
|
||||
|
||||
Point3 measured_; /** The measurement */
|
||||
|
||||
public:
|
||||
|
||||
// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<BiasedGPSFactor> shared_ptr;
|
||||
|
||||
/** default constructor - only use for serialization */
|
||||
BiasedGPSFactor() {}
|
||||
|
||||
/** Constructor */
|
||||
BiasedGPSFactor(Key posekey, Key biaskey, const Point3 measured,
|
||||
const SharedNoiseModel& model) :
|
||||
Base(model, posekey, biaskey), measured_(measured) {
|
||||
}
|
||||
|
||||
virtual ~BiasedGPSFactor() {}
|
||||
|
||||
/** implement functions needed for Testable */
|
||||
|
||||
/** print */
|
||||
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
std::cout << s << "BiasedGPSFactor("
|
||||
<< keyFormatter(this->key1()) << ","
|
||||
<< keyFormatter(this->key2()) << ")\n";
|
||||
measured_.print(" measured: ");
|
||||
this->noiseModel_->print(" noise model: ");
|
||||
}
|
||||
|
||||
/** equals */
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol) && this->measured_.equals(e->measured_, tol);
|
||||
}
|
||||
|
||||
/** implement functions needed to derive from Factor */
|
||||
|
||||
/** vector of errors */
|
||||
Vector evaluateError(const Pose3& pose, const Point3& bias,
|
||||
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
|
||||
boost::none) const {
|
||||
|
||||
if (H1 || H2){
|
||||
H1->resize(3,6); // jacobian wrt pose
|
||||
(*H1) << Matrix3::Zero(), pose.rotation().matrix();
|
||||
H2->resize(3,3); // jacobian wrt bias
|
||||
(*H2) << Matrix3::Identity();
|
||||
}
|
||||
return pose.translation().vector() + bias.vector() - measured_.vector();
|
||||
}
|
||||
|
||||
/** return the measured */
|
||||
const Point3 measured() const {
|
||||
return measured_;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & boost::serialization::make_nvp("NoiseModelFactor2",
|
||||
boost::serialization::base_object<Base>(*this));
|
||||
ar & BOOST_SERIALIZATION_NVP(measured_);
|
||||
}
|
||||
}; // \class BiasedGPSFactor
|
||||
|
||||
} /// namespace gtsam
|
|
@ -0,0 +1,135 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file GaussMarkov1stOrderFactor.h
|
||||
* @author Vadim Indelman, Stephen Williams, Luca Carlone
|
||||
* @date Jan 17, 2012
|
||||
**/
|
||||
#pragma once
|
||||
|
||||
#include <ostream>
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/Lie.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/*
|
||||
* - The 1st order GaussMarkov factor relates two keys of the same type. This relation is given via
|
||||
* key_2 = exp(-1/tau*delta_t) * key1 + w_d
|
||||
* where tau is the time constant and delta_t is the time difference between the two keys.
|
||||
* w_d is the equivalent discrete noise, whose covariance is calculated from the continuous noise model and delta_t.
|
||||
* - w_d is approximated as a Gaussian noise.
|
||||
* - In the multi-dimensional case, tau is a vector, and the above equation is applied on each element
|
||||
* in the state (represented by keys), using the appropriate time constant in the vector tau.
|
||||
*/
|
||||
|
||||
/*
|
||||
* A class for a measurement predicted by "GaussMarkov1stOrderFactor(config[key1],config[key2])"
|
||||
* KEY1::Value is the Lie Group type
|
||||
* T is the measurement type, by default the same
|
||||
*/
|
||||
template<class VALUE>
|
||||
class GaussMarkov1stOrderFactor: public NoiseModelFactor2<VALUE, VALUE> {
|
||||
|
||||
private:
|
||||
|
||||
typedef GaussMarkov1stOrderFactor<VALUE> This;
|
||||
typedef NoiseModelFactor2<VALUE, VALUE> Base;
|
||||
|
||||
double dt_;
|
||||
Vector tau_;
|
||||
|
||||
public:
|
||||
|
||||
// shorthand for a smart pointer to a factor
|
||||
typedef typename boost::shared_ptr<GaussMarkov1stOrderFactor> shared_ptr;
|
||||
|
||||
/** default constructor - only use for serialization */
|
||||
GaussMarkov1stOrderFactor() {}
|
||||
|
||||
/** Constructor */
|
||||
GaussMarkov1stOrderFactor(const Key& key1, const Key& key2, double delta_t, Vector tau,
|
||||
const SharedGaussian& model) :
|
||||
Base(calcDiscreteNoiseModel(model, delta_t), key1, key2), dt_(delta_t), tau_(tau) {
|
||||
}
|
||||
|
||||
virtual ~GaussMarkov1stOrderFactor() {}
|
||||
|
||||
/** implement functions needed for Testable */
|
||||
|
||||
/** print */
|
||||
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
std::cout << s << "GaussMarkov1stOrderFactor("
|
||||
<< keyFormatter(this->key1()) << ","
|
||||
<< keyFormatter(this->key2()) << ")\n";
|
||||
this->noiseModel_->print(" noise model");
|
||||
}
|
||||
|
||||
/** equals */
|
||||
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
|
||||
const This *e = dynamic_cast<const This*> (&expected);
|
||||
return e != NULL && Base::equals(*e, tol);
|
||||
}
|
||||
|
||||
/** implement functions needed to derive from Factor */
|
||||
|
||||
/** vector of errors */
|
||||
Vector evaluateError(const VALUE& p1, const VALUE& p2,
|
||||
boost::optional<Matrix&> H1 = boost::none,
|
||||
boost::optional<Matrix&> H2 = boost::none) const {
|
||||
|
||||
Vector v1( VALUE::Logmap(p1) );
|
||||
Vector v2( VALUE::Logmap(p2) );
|
||||
|
||||
Vector alpha(tau_.size());
|
||||
Vector alpha_v1(tau_.size());
|
||||
for(int i=0; i<tau_.size(); i++){
|
||||
alpha(i) = exp(- 1/tau_(i)*dt_ );
|
||||
alpha_v1(i) = alpha(i) * v1(i);
|
||||
}
|
||||
|
||||
Vector hx(v2 - alpha_v1);
|
||||
|
||||
if(H1) *H1 = - diag(alpha);
|
||||
if(H2) *H2 = eye(v2.size());
|
||||
|
||||
return hx;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar & BOOST_SERIALIZATION_NVP(dt_);
|
||||
ar & BOOST_SERIALIZATION_NVP(tau_);
|
||||
}
|
||||
|
||||
SharedGaussian calcDiscreteNoiseModel(const SharedGaussian& model, double delta_t){
|
||||
/* Q_d (approx)= Q * delta_t */
|
||||
/* In practice, square root of the information matrix is represented, so that:
|
||||
* R_d (approx)= R / sqrt(delta_t)
|
||||
* */
|
||||
noiseModel::Gaussian::shared_ptr gaussian_model = boost::dynamic_pointer_cast<noiseModel::Gaussian>(model);
|
||||
SharedGaussian model_d(noiseModel::Gaussian::SqrtInformation(gaussian_model->R()/sqrt(delta_t)));
|
||||
return model_d;
|
||||
}
|
||||
|
||||
}; // \class GaussMarkov1stOrderFactor
|
||||
|
||||
} /// namespace gtsam
|
|
@ -0,0 +1,85 @@
|
|||
/**
|
||||
* @file testBiasedGPSFactor.cpp
|
||||
* @brief
|
||||
* @author Luca Carlone
|
||||
* @date July 30, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam_unstable/slam/BiasedGPSFactor.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace gtsam;
|
||||
using namespace gtsam::symbol_shorthand;
|
||||
using namespace gtsam::noiseModel;
|
||||
// Convenience for named keys
|
||||
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::B;
|
||||
|
||||
TEST(BiasedGPSFactor, errorNoiseless) {
|
||||
|
||||
Rot3 R = Rot3::rodriguez(0.1, 0.2, 0.3);
|
||||
Point3 t(1.0, 0.5, 0.2);
|
||||
Pose3 pose(R,t);
|
||||
Point3 bias(0.0,0.0,0.0);
|
||||
Point3 noise(0.0,0.0,0.0);
|
||||
Point3 measured = t + noise;
|
||||
|
||||
BiasedGPSFactor factor(X(1), B(1), measured, Isotropic::Sigma(3, 0.05));
|
||||
Vector expectedError = (Vector(3) << 0.0, 0.0, 0.0 );
|
||||
Vector actualError = factor.evaluateError(pose,bias);
|
||||
EXPECT(assert_equal(expectedError,actualError, 1E-5));
|
||||
}
|
||||
|
||||
TEST(BiasedGPSFactor, errorNoisy) {
|
||||
|
||||
Rot3 R = Rot3::rodriguez(0.1, 0.2, 0.3);
|
||||
Point3 t(1.0, 0.5, 0.2);
|
||||
Pose3 pose(R,t);
|
||||
Point3 bias(0.0,0.0,0.0);
|
||||
Point3 noise(1.0,2.0,3.0);
|
||||
Point3 measured = t - noise;
|
||||
|
||||
BiasedGPSFactor factor(X(1), B(1), measured, Isotropic::Sigma(3, 0.05));
|
||||
Vector expectedError = (Vector(3) << 1.0, 2.0, 3.0 );
|
||||
Vector actualError = factor.evaluateError(pose,bias);
|
||||
EXPECT(assert_equal(expectedError,actualError, 1E-5));
|
||||
}
|
||||
|
||||
TEST(BiasedGPSFactor, jacobian) {
|
||||
|
||||
Rot3 R = Rot3::rodriguez(0.1, 0.2, 0.3);
|
||||
Point3 t(1.0, 0.5, 0.2);
|
||||
Pose3 pose(R,t);
|
||||
Point3 bias(0.0,0.0,0.0);
|
||||
|
||||
Point3 noise(0.0,0.0,0.0);
|
||||
Point3 measured = t + noise;
|
||||
|
||||
BiasedGPSFactor factor(X(1), B(1), measured, Isotropic::Sigma(3, 0.05));
|
||||
|
||||
Matrix actualH1, actualH2;
|
||||
factor.evaluateError(pose,bias, actualH1, actualH2);
|
||||
|
||||
Matrix numericalH1 = numericalDerivative21(
|
||||
boost::function<Vector(const Pose3&, const Point3&)>(boost::bind(
|
||||
&BiasedGPSFactor::evaluateError, factor, _1, _2, boost::none,
|
||||
boost::none)), pose, bias, 1e-5);
|
||||
EXPECT(assert_equal(numericalH1,actualH1, 1E-5));
|
||||
|
||||
Matrix numericalH2 = numericalDerivative22(
|
||||
boost::function<Vector(const Pose3&, const Point3&)>(boost::bind(
|
||||
&BiasedGPSFactor::evaluateError, factor, _1, _2, boost::none,
|
||||
boost::none)), pose, bias, 1e-5);
|
||||
EXPECT(assert_equal(numericalH2,actualH2, 1E-5));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -0,0 +1,124 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testGaussMarkov1stOrderFactor.cpp
|
||||
* @brief Unit tests for the GaussMarkov1stOrder factor
|
||||
* @author Vadim Indelman
|
||||
* @date Jan 17, 2012
|
||||
*/
|
||||
|
||||
#include <gtsam_unstable/slam/GaussMarkov1stOrderFactor.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam/base/LieVector.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
//! Factors
|
||||
typedef GaussMarkov1stOrderFactor<LieVector> GaussMarkovFactor;
|
||||
|
||||
/* ************************************************************************* */
|
||||
LieVector predictionError(const LieVector& v1, const LieVector& v2, const GaussMarkovFactor factor) {
|
||||
return factor.evaluateError(v1, v2);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussMarkovFactor, equals )
|
||||
{
|
||||
// Create two identical factors and make sure they're equal
|
||||
Key x1(1);
|
||||
Key x2(2);
|
||||
double delta_t = 0.10;
|
||||
Vector tau = (Vector(3) << 100.0, 150.0, 10.0);
|
||||
SharedGaussian model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
|
||||
GaussMarkovFactor factor1(x1, x2, delta_t, tau, model);
|
||||
GaussMarkovFactor factor2(x1, x2, delta_t, tau, model);
|
||||
|
||||
CHECK(assert_equal(factor1, factor2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( GaussMarkovFactor, error )
|
||||
{
|
||||
Values linPoint;
|
||||
Key x1(1);
|
||||
Key x2(2);
|
||||
double delta_t = 0.10;
|
||||
Vector tau = (Vector(3) << 100.0, 150.0, 10.0);
|
||||
SharedGaussian model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
|
||||
LieVector v1 = LieVector((Vector(3) << 10.0, 12.0, 13.0));
|
||||
LieVector v2 = LieVector((Vector(3) << 10.0, 15.0, 14.0));
|
||||
|
||||
// Create two nodes
|
||||
linPoint.insert(x1, v1);
|
||||
linPoint.insert(x2, v2);
|
||||
|
||||
GaussMarkovFactor factor(x1, x2, delta_t, tau, model);
|
||||
Vector Err1( factor.evaluateError(v1, v2) );
|
||||
|
||||
// Manually calculate the error
|
||||
Vector alpha(tau.size());
|
||||
Vector alpha_v1(tau.size());
|
||||
for(int i=0; i<tau.size(); i++){
|
||||
alpha(i) = exp(- 1/tau(i)*delta_t );
|
||||
alpha_v1(i) = alpha(i) * v1(i);
|
||||
}
|
||||
Vector Err2( v2 - alpha_v1 );
|
||||
|
||||
CHECK(assert_equal(Err1, Err2, 1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST (GaussMarkovFactor, jacobian ) {
|
||||
|
||||
Values linPoint;
|
||||
Key x1(1);
|
||||
Key x2(2);
|
||||
double delta_t = 0.10;
|
||||
Vector tau = (Vector(3) << 100.0, 150.0, 10.0);
|
||||
SharedGaussian model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||
|
||||
GaussMarkovFactor factor(x1, x2, delta_t, tau, model);
|
||||
|
||||
// Update the linearization point
|
||||
LieVector v1_upd = LieVector((Vector(3) << 0.5, -0.7, 0.3));
|
||||
LieVector v2_upd = LieVector((Vector(3) << -0.7, 0.4, 0.9));
|
||||
|
||||
// Calculate the Jacobian matrix using the factor
|
||||
Matrix computed_H1, computed_H2;
|
||||
factor.evaluateError(v1_upd, v2_upd, computed_H1, computed_H2);
|
||||
|
||||
// Calculate the Jacobian matrices H1 and H2 using the numerical derivative function
|
||||
Matrix numerical_H1, numerical_H2;
|
||||
numerical_H1 = numericalDerivative21<Vector3, Vector3, Vector3>(
|
||||
boost::bind(&predictionError, _1, _2, factor), v1_upd, v2_upd);
|
||||
numerical_H2 = numericalDerivative22<Vector3, Vector3, Vector3>(
|
||||
boost::bind(&predictionError, _1, _2, factor), v1_upd, v2_upd);
|
||||
|
||||
// Verify they are equal for this choice of state
|
||||
CHECK( assert_equal(numerical_H1, computed_H1, 1e-9));
|
||||
CHECK( assert_equal(numerical_H2, computed_H2, 1e-9));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main()
|
||||
{
|
||||
TestResult tr; return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -26,7 +26,7 @@ using namespace gtsam;
|
|||
|
||||
int main()
|
||||
{
|
||||
int n = 1000000;
|
||||
int n = 1e6;
|
||||
|
||||
const Pose3 pose1((Matrix)(Matrix(3,3) <<
|
||||
1., 0., 0.,
|
||||
|
@ -35,8 +35,6 @@ int main()
|
|||
),
|
||||
Point3(0,0,0.5));
|
||||
|
||||
// static Cal3_S2 K(500, 100, 0.1, 320, 240);
|
||||
// static Cal3DS2 K(500, 100, 0.1, 320, 240, 1e-3, 2.0*1e-3, 3.0*1e-3, 4.0*1e-3);
|
||||
static Cal3Bundler K(500, 1e-3, 2.0*1e-3);
|
||||
const PinholeCamera<Cal3Bundler> camera(pose1,K);
|
||||
const Point3 point1(-0.08,-0.08, 0.0);
|
||||
|
@ -63,8 +61,18 @@ int main()
|
|||
camera.project(point1);
|
||||
long timeLog2 = clock();
|
||||
double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
|
||||
cout << ((double)n/seconds) << " calls/second" << endl;
|
||||
cout << ((double)seconds*1000000/n) << " musecs/call" << endl;
|
||||
cout << ((double)seconds*1e9/n) << " nanosecs/call" << endl;
|
||||
}
|
||||
|
||||
// Oct 12 2014, Macbook Air
|
||||
{
|
||||
long timeLog = clock();
|
||||
Point2 measurement(0,0);
|
||||
for(int i = 0; i < n; i++)
|
||||
measurement.localCoordinates(camera.project(point1));
|
||||
long timeLog2 = clock();
|
||||
double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
|
||||
cout << ((double)seconds*1e9/n) << " nanosecs/call" << endl;
|
||||
}
|
||||
|
||||
// Oct 12 2013, iMac 3.06GHz Core i3
|
||||
|
@ -84,8 +92,7 @@ int main()
|
|||
camera.project(point1, Dpose, Dpoint);
|
||||
long timeLog2 = clock();
|
||||
double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
|
||||
cout << ((double)n/seconds) << " calls/second" << endl;
|
||||
cout << ((double)seconds*1000000/n) << " musecs/call" << endl;
|
||||
cout << ((double)seconds*1e9/n) << " nanosecs/call" << endl;
|
||||
}
|
||||
|
||||
// Oct 12 2013, iMac 3.06GHz Core i3
|
||||
|
@ -97,7 +104,7 @@ int main()
|
|||
// Cal3Bundler fix: 2.0946 musecs/call
|
||||
// June 24 2014, Macbook Pro 2.3GHz Core i7
|
||||
// GTSAM 3.1: 0.2294 musecs/call
|
||||
// After project fix: 0.2093 musecs/call
|
||||
// After project fix: 0.2093 nanosecs/call
|
||||
{
|
||||
Matrix Dpose, Dpoint, Dcal;
|
||||
long timeLog = clock();
|
||||
|
@ -105,8 +112,7 @@ int main()
|
|||
camera.project(point1, Dpose, Dpoint, Dcal);
|
||||
long timeLog2 = clock();
|
||||
double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
|
||||
cout << ((double)n/seconds) << " calls/second" << endl;
|
||||
cout << ((double)seconds*1000000/n) << " musecs/call" << endl;
|
||||
cout << ((double)seconds*1e9/n) << " nanosecs/call" << endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
|
Loading…
Reference in New Issue