Merge branch 'develop' into feature/Eigen_3.3.4

release/4.3a0
Frank Dellaert 2018-10-23 07:20:35 -04:00
commit a934e16360
22 changed files with 1112 additions and 126 deletions

View File

@ -52,7 +52,7 @@ function(pyx_to_cpp target pyx_file generated_cpp include_dirs)
add_custom_command( add_custom_command(
OUTPUT ${generated_cpp} OUTPUT ${generated_cpp}
COMMAND COMMAND
${CYTHON_EXECUTABLE} -X boundscheck=False -a -v --fast-fail --cplus ${includes_for_cython} ${pyx_file} -o ${generated_cpp} ${CYTHON_EXECUTABLE} -X boundscheck=False -v --fast-fail --cplus ${includes_for_cython} ${pyx_file} -o ${generated_cpp}
VERBATIM) VERBATIM)
add_custom_target(${target} ALL DEPENDS ${generated_cpp}) add_custom_target(${target} ALL DEPENDS ${generated_cpp})
endfunction() endfunction()
@ -95,7 +95,7 @@ function(cythonize target pyx_file output_lib_we output_dir include_dirs libs in
# Late dependency injection, to make sure this gets called whenever the interface header is updated # Late dependency injection, to make sure this gets called whenever the interface header is updated
# See: https://stackoverflow.com/questions/40032593/cmake-does-not-rebuild-dependent-after-prerequisite-changes # See: https://stackoverflow.com/questions/40032593/cmake-does-not-rebuild-dependent-after-prerequisite-changes
add_custom_command(OUTPUT ${generated_cpp} DEPENDS ${interface_header} APPEND) add_custom_command(OUTPUT ${generated_cpp} DEPENDS ${interface_header} ${pyx_file} APPEND)
if (NOT "${dependencies}" STREQUAL "") if (NOT "${dependencies}" STREQUAL "")
add_dependencies(${target}_pyx2cpp "${dependencies}") add_dependencies(${target}_pyx2cpp "${dependencies}")
endif() endif()

View File

@ -0,0 +1,176 @@
"""
iSAM2 example with ImuFactor.
Author: Robert Truax (C++), Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
import gtsam
import gtsam.utils.plot as gtsam_plot
def X(key):
"""Create symbol for pose key."""
return gtsam.symbol(ord('x'), key)
def V(key):
"""Create symbol for velocity key."""
return gtsam.symbol(ord('v'), key)
def vector3(x, y, z):
"""Create 3d double numpy array."""
return np.array([x, y, z], dtype=np.float)
def ISAM2_plot(values, fignum=0):
"""Plot poses."""
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plt.cla()
i = 0
min_bounds = 0, 0, 0
max_bounds = 0, 0, 0
while values.exists(X(i)):
pose_i = values.atPose3(X(i))
gtsam_plot.plot_pose3(fignum, pose_i, 10)
position = pose_i.translation().vector()
min_bounds = [min(v1, v2) for (v1, v2) in zip(position, min_bounds)]
max_bounds = [max(v1, v2) for (v1, v2) in zip(position, max_bounds)]
# max_bounds = min(pose_i.x(), max_bounds[0]), 0, 0
i += 1
# draw
axes.set_xlim3d(min_bounds[0]-1, max_bounds[0]+1)
axes.set_ylim3d(min_bounds[1]-1, max_bounds[1]+1)
axes.set_zlim3d(min_bounds[2]-1, max_bounds[2]+1)
plt.pause(1)
# IMU preintegration parameters
# Default Params for a Z-up navigation frame, such as ENU: gravity points along negative Z-axis
g = 9.81
n_gravity = vector3(0, 0, -g)
PARAMS = gtsam.PreintegrationParams.MakeSharedU(g)
I = np.eye(3)
PARAMS.setAccelerometerCovariance(I * 0.1)
PARAMS.setGyroscopeCovariance(I * 0.1)
PARAMS.setIntegrationCovariance(I * 0.1)
PARAMS.setUse2ndOrderCoriolis(False)
PARAMS.setOmegaCoriolis(vector3(0, 0, 0))
BIAS_COVARIANCE = gtsam.noiseModel_Isotropic.Variance(6, 0.1)
DELTA = gtsam.Pose3(gtsam.Rot3.Rodrigues(0, 0, 0),
gtsam.Point3(0.05, -0.10, 0.20))
def IMU_example():
"""Run iSAM 2 example with IMU factor."""
# Start with a camera on x-axis looking at origin
radius = 30
up = gtsam.Point3(0, 0, 1)
target = gtsam.Point3(0, 0, 0)
position = gtsam.Point3(radius, 0, 0)
camera = gtsam.SimpleCamera.Lookat(position, target, up, gtsam.Cal3_S2())
pose_0 = camera.pose()
# Create the set of ground-truth landmarks and poses
angular_velocity = math.radians(180) # rad/sec
delta_t = 1.0/18 # makes for 10 degrees per step
angular_velocity_vector = vector3(0, -angular_velocity, 0)
linear_velocity_vector = vector3(radius * angular_velocity, 0, 0)
scenario = gtsam.ConstantTwistScenario(
angular_velocity_vector, linear_velocity_vector, pose_0)
# Create a factor graph
newgraph = gtsam.NonlinearFactorGraph()
# Create (incremental) ISAM2 solver
isam = gtsam.ISAM2()
# Create the initial estimate to the solution
# Intentionally initialize the variables off from the ground truth
initialEstimate = gtsam.Values()
# Add a prior on pose x0. This indirectly specifies where the origin is.
# 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
noise = gtsam.noiseModel_Diagonal.Sigmas(
np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
newgraph.push_back(gtsam.PriorFactorPose3(X(0), pose_0, noise))
# Add imu priors
biasKey = gtsam.symbol(ord('b'), 0)
biasnoise = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
biasprior = gtsam.PriorFactorConstantBias(biasKey, gtsam.imuBias_ConstantBias(),
biasnoise)
newgraph.push_back(biasprior)
initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
velnoise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
# Calculate with correct initial velocity
n_velocity = vector3(0, angular_velocity * radius, 0)
velprior = gtsam.PriorFactorVector(V(0), n_velocity, velnoise)
newgraph.push_back(velprior)
initialEstimate.insert(V(0), n_velocity)
accum = gtsam.PreintegratedImuMeasurements(PARAMS)
# Simulate poses and imu measurements, adding them to the factor graph
for i in range(80):
t = i * delta_t # simulation time
if i == 0: # First time add two poses
pose_1 = scenario.pose(delta_t)
initialEstimate.insert(X(0), pose_0.compose(DELTA))
initialEstimate.insert(X(1), pose_1.compose(DELTA))
elif i >= 2: # Add more poses as necessary
pose_i = scenario.pose(t)
initialEstimate.insert(X(i), pose_i.compose(DELTA))
if i > 0:
# Add Bias variables periodically
if i % 5 == 0:
biasKey += 1
factor = gtsam.BetweenFactorConstantBias(
biasKey - 1, biasKey, gtsam.imuBias_ConstantBias(), BIAS_COVARIANCE)
newgraph.add(factor)
initialEstimate.insert(biasKey, gtsam.imuBias_ConstantBias())
# Predict acceleration and gyro measurements in (actual) body frame
nRb = scenario.rotation(t).matrix()
bRn = np.transpose(nRb)
measuredAcc = scenario.acceleration_b(t) - np.dot(bRn, n_gravity)
measuredOmega = scenario.omega_b(t)
accum.integrateMeasurement(measuredAcc, measuredOmega, delta_t)
# Add Imu Factor
imufac = gtsam.ImuFactor(
X(i - 1), V(i - 1), X(i), V(i), biasKey, accum)
newgraph.add(imufac)
# insert new velocity, which is wrong
initialEstimate.insert(V(i), n_velocity)
accum.resetIntegration()
# Incremental solution
isam.update(newgraph, initialEstimate)
result = isam.calculateEstimate()
ISAM2_plot(result)
# reset
newgraph = gtsam.NonlinearFactorGraph()
initialEstimate.clear()
if __name__ == '__main__':
IMU_example()

View File

@ -0,0 +1,52 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Simple robot motion example, with prior and two odometry measurements
Author: Frank Dellaert
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import numpy as np
import gtsam
# Create noise models
ODOMETRY_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
PRIOR_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
# Create an empty nonlinear factor graph
graph = gtsam.NonlinearFactorGraph()
# Add a prior on the first pose, setting it to the origin
# A prior factor consists of a mean and a noise model (covariance matrix)
priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior at origin
graph.add(gtsam.PriorFactorPose2(1, priorMean, PRIOR_NOISE))
# Add odometry factors
odometry = gtsam.Pose2(2.0, 0.0, 0.0)
# For simplicity, we will use the same noise model for each odometry factor
# Create odometry (Between) factors between consecutive poses
graph.add(gtsam.BetweenFactorPose2(1, 2, odometry, ODOMETRY_NOISE))
graph.add(gtsam.BetweenFactorPose2(2, 3, odometry, ODOMETRY_NOISE))
print("\nFactor Graph:\n{}".format(graph))
# Create the data structure to hold the initialEstimate estimate to the solution
# For illustrative purposes, these have been deliberately set to incorrect values
initial = gtsam.Values()
initial.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initial.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initial.insert(3, gtsam.Pose2(4.1, 0.1, 0.1))
print("\nInitial Estimate:\n{}".format(initial))
# optimize using Levenberg-Marquardt optimization
params = gtsam.LevenbergMarquardtParams()
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
print("\nFinal Result:\n{}".format(result))

View File

@ -0,0 +1,80 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Simple robotics example using odometry measurements and bearing-range (laser) measurements
Author: Alex Cunningham (C++), Kevin Deng & Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import numpy as np
import gtsam
# Create noise models
PRIOR_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
ODOMETRY_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
MEASUREMENT_NOISE = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.2]))
# Create an empty nonlinear factor graph
graph = gtsam.NonlinearFactorGraph()
# Create the keys corresponding to unknown variables in the factor graph
X1 = gtsam.symbol(ord('x'), 1)
X2 = gtsam.symbol(ord('x'), 2)
X3 = gtsam.symbol(ord('x'), 3)
L1 = gtsam.symbol(ord('l'), 4)
L2 = gtsam.symbol(ord('l'), 5)
# Add a prior on pose X1 at the origin. A prior factor consists of a mean and a noise model
graph.add(gtsam.PriorFactorPose2(X1, gtsam.Pose2(0.0, 0.0, 0.0), PRIOR_NOISE))
# Add odometry factors between X1,X2 and X2,X3, respectively
graph.add(gtsam.BetweenFactorPose2(
X1, X2, gtsam.Pose2(2.0, 0.0, 0.0), ODOMETRY_NOISE))
graph.add(gtsam.BetweenFactorPose2(
X2, X3, gtsam.Pose2(2.0, 0.0, 0.0), ODOMETRY_NOISE))
# Add Range-Bearing measurements to two different landmarks L1 and L2
graph.add(gtsam.BearingRangeFactor2D(
X1, L1, gtsam.Rot2.fromDegrees(45), np.sqrt(4.0+4.0), MEASUREMENT_NOISE))
graph.add(gtsam.BearingRangeFactor2D(
X2, L1, gtsam.Rot2.fromDegrees(90), 2.0, MEASUREMENT_NOISE))
graph.add(gtsam.BearingRangeFactor2D(
X3, L2, gtsam.Rot2.fromDegrees(90), 2.0, MEASUREMENT_NOISE))
# Print graph
print("Factor Graph:\n{}".format(graph))
# Create (deliberately inaccurate) initial estimate
initial_estimate = gtsam.Values()
initial_estimate.insert(X1, gtsam.Pose2(-0.25, 0.20, 0.15))
initial_estimate.insert(X2, gtsam.Pose2(2.30, 0.10, -0.20))
initial_estimate.insert(X3, gtsam.Pose2(4.10, 0.10, 0.10))
initial_estimate.insert(L1, gtsam.Point2(1.80, 2.10))
initial_estimate.insert(L2, gtsam.Point2(4.10, 1.80))
# Print
print("Initial Estimate:\n{}".format(initial_estimate))
# Optimize using Levenberg-Marquardt optimization. The optimizer
# accepts an optional set of configuration parameters, controlling
# things like convergence criteria, the type of linear system solver
# to use, and the amount of information displayed during optimization.
# Here we will use the default set of parameters. See the
# documentation for the full set of parameters.
params = gtsam.LevenbergMarquardtParams()
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial_estimate, params)
result = optimizer.optimize()
print("\nFinal Result:\n{}".format(result))
# Calculate and print marginal covariances for all variables
marginals = gtsam.Marginals(graph, result)
for (key, str) in [(X1, "X1"), (X2, "X2"), (X3, "X3"), (L1, "L1"), (L2, "L2")]:
print("{} covariance:\n{}\n".format(str, marginals.marginalCovariance(key)))

View File

@ -0,0 +1,87 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Simple robotics example using odometry measurements and bearing-range (laser) measurements
Author: Alex Cunningham (C++), Kevin Deng & Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import math
import numpy as np
import gtsam
def vector3(x, y, z):
"""Create 3d double numpy array."""
return np.array([x, y, z], dtype=np.float)
# Create noise models
PRIOR_NOISE = gtsam.noiseModel_Diagonal.Sigmas(vector3(0.3, 0.3, 0.1))
ODOMETRY_NOISE = gtsam.noiseModel_Diagonal.Sigmas(vector3(0.2, 0.2, 0.1))
# 1. Create a factor graph container and add factors to it
graph = gtsam.NonlinearFactorGraph()
# 2a. Add a prior on the first pose, setting it to the origin
# A prior factor consists of a mean and a noise ODOMETRY_NOISE (covariance matrix)
graph.add(gtsam.PriorFactorPose2(1, gtsam.Pose2(0, 0, 0), PRIOR_NOISE))
# 2b. Add odometry factors
# Create odometry (Between) factors between consecutive poses
graph.add(gtsam.BetweenFactorPose2(1, 2, gtsam.Pose2(2, 0, 0), ODOMETRY_NOISE))
graph.add(gtsam.BetweenFactorPose2(
2, 3, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
graph.add(gtsam.BetweenFactorPose2(
3, 4, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
graph.add(gtsam.BetweenFactorPose2(
4, 5, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
# 2c. Add the loop closure constraint
# This factor encodes the fact that we have returned to the same pose. In real
# systems, these constraints may be identified in many ways, such as appearance-based
# techniques with camera images. We will use another Between Factor to enforce this constraint:
graph.add(gtsam.BetweenFactorPose2(
5, 2, gtsam.Pose2(2, 0, math.pi / 2), ODOMETRY_NOISE))
print("\nFactor Graph:\n{}".format(graph)) # print
# 3. Create the data structure to hold the initial_estimate estimate to the
# solution. For illustrative purposes, these have been deliberately set to incorrect values
initial_estimate = gtsam.Values()
initial_estimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initial_estimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initial_estimate.insert(3, gtsam.Pose2(4.1, 0.1, math.pi / 2))
initial_estimate.insert(4, gtsam.Pose2(4.0, 2.0, math.pi))
initial_estimate.insert(5, gtsam.Pose2(2.1, 2.1, -math.pi / 2))
print("\nInitial Estimate:\n{}".format(initial_estimate)) # print
# 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer
# The optimizer accepts an optional set of configuration parameters,
# controlling things like convergence criteria, the type of linear
# system solver to use, and the amount of information displayed during
# optimization. We will set a few parameters as a demonstration.
parameters = gtsam.GaussNewtonParams()
# Stop iterating once the change in error between steps is less than this value
parameters.setRelativeErrorTol(1e-5)
# Do not perform more than N iteration steps
parameters.setMaxIterations(100)
# Create the optimizer ...
optimizer = gtsam.GaussNewtonOptimizer(graph, initial_estimate, parameters)
# ... and optimize
result = optimizer.optimize()
print("Final Result:\n{}".format(result))
# 5. Calculate and print marginal covariances for all variables
marginals = gtsam.Marginals(graph, result)
for i in range(1, 6):
print("X{} covariance:\n{}\n".format(i, marginals.marginalCovariance(i)))

View File

@ -0,0 +1,4 @@
These examples are almost identical to the old handwritten python wrapper
examples. However, there are just some slight name changes, for example
noiseModel.Diagonal becomes noiseModel_Diagonal etc...
Also, annoyingly, instead of gtsam.Symbol('b',0) we now need to say gtsam.symbol(ord('b'), 0))

View File

@ -0,0 +1,38 @@
"""
A structure-from-motion example with landmarks
- The landmarks form a 10 meter cube
- The robot rotates around the landmarks, always facing towards the cube
"""
# pylint: disable=invalid-name, E1101
import numpy as np
import gtsam
def createPoints():
# Create the set of ground-truth landmarks
points = [gtsam.Point3(10.0, 10.0, 10.0),
gtsam.Point3(-10.0, 10.0, 10.0),
gtsam.Point3(-10.0, -10.0, 10.0),
gtsam.Point3(10.0, -10.0, 10.0),
gtsam.Point3(10.0, 10.0, -10.0),
gtsam.Point3(-10.0, 10.0, -10.0),
gtsam.Point3(-10.0, -10.0, -10.0),
gtsam.Point3(10.0, -10.0, -10.0)]
return points
def createPoses(K):
# Create the set of ground-truth poses
radius = 30.0
angles = np.linspace(0, 2*np.pi, 8, endpoint=False)
up = gtsam.Point3(0, 0, 1)
target = gtsam.Point3(0, 0, 0)
poses = []
for theta in angles:
position = gtsam.Point3(radius*np.cos(theta),
radius*np.sin(theta), 0.0)
camera = gtsam.PinholeCameraCal3_S2.Lookat(position, target, up, K)
poses.append(camera.pose())
return poses

View File

@ -0,0 +1,163 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
An example of running visual SLAM using iSAM2.
Author: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
import gtsam
import gtsam.utils.plot as gtsam_plot
from gtsam.examples import SFMdata
def X(i):
"""Create key for pose i."""
return int(gtsam.symbol(ord('x'), i))
def L(j):
"""Create key for landmark j."""
return int(gtsam.symbol(ord('l'), j))
def visual_ISAM2_plot(result):
"""
VisualISAMPlot plots current state of ISAM2 object
Author: Ellon Paiva
Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert
"""
# Declare an id for the figure
fignum = 0
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plt.cla()
# Plot points
# Can't use data because current frame might not see all points
# marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate())
# gtsam.plot_3d_points(result, [], marginals)
gtsam_plot.plot_3d_points(fignum, result, 'rx')
# Plot cameras
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
gtsam_plot.plot_pose3(fignum, pose_i, 10)
i += 1
# draw
axes.set_xlim3d(-40, 40)
axes.set_ylim3d(-40, 40)
axes.set_zlim3d(-40, 40)
plt.pause(1)
def visual_ISAM2_example():
plt.ion()
# Define the camera calibration parameters
K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
# Define the camera observation noise model
measurement_noise = gtsam.noiseModel_Isotropic.Sigma(
2, 1.0) # one pixel in u and v
# Create the set of ground-truth landmarks
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses(K)
# Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
# to maintain proper linearization and efficient variable ordering, iSAM2
# performs partial relinearization/reordering at each step. A parameter
# structure is available that allows the user to set various properties, such
# as the relinearization threshold and type of linear solver. For this
# example, we we set the relinearization threshold small so the iSAM2 result
# will approach the batch result.
parameters = gtsam.ISAM2Params()
parameters.setRelinearizeThreshold(0.01)
parameters.setRelinearizeSkip(1)
isam = gtsam.ISAM2(parameters)
# Create a Factor Graph and Values to hold the new data
graph = gtsam.NonlinearFactorGraph()
initial_estimate = gtsam.Values()
# Loop over the different poses, adding the observations to iSAM incrementally
for i, pose in enumerate(poses):
# Add factors for each landmark observation
for j, point in enumerate(points):
camera = gtsam.PinholeCameraCal3_S2(pose, K)
measurement = camera.project(point)
graph.push_back(gtsam.GenericProjectionFactorCal3_S2(
measurement, measurement_noise, X(i), L(j), K))
# Add an initial guess for the current pose
# Intentionally initialize the variables off from the ground truth
initial_estimate.insert(X(i), pose.compose(gtsam.Pose3(
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
# If this is the first iteration, add a prior on the first pose to set the
# coordinate frame and a prior on the first landmark to set the scale.
# Also, as iSAM solves incrementally, we must wait until each is observed
# at least twice before adding it to iSAM.
if i == 0:
# Add a prior on pose x0
pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array(
[0.3, 0.3, 0.3, 0.1, 0.1, 0.1])) # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], pose_noise))
# Add a prior on landmark l0
point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
graph.push_back(gtsam.PriorFactorPoint3(
L(0), points[0], point_noise)) # add directly to graph
# Add initial guesses to all observed landmarks
# Intentionally initialize the variables off from the ground truth
for j, point in enumerate(points):
initial_estimate.insert(L(j), gtsam.Point3(
point.x()-0.25, point.y()+0.20, point.z()+0.15))
else:
# Update iSAM with the new factors
isam.update(graph, initial_estimate)
# Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver.
# If accuracy is desired at the expense of time, update(*) can be called additional
# times to perform multiple optimizer iterations every step.
isam.update()
current_estimate = isam.calculateEstimate()
print("****************************************************")
print("Frame", i, ":")
for j in range(i + 1):
print(X(j), ":", current_estimate.atPose3(X(j)))
for j in range(len(points)):
print(L(j), ":", current_estimate.atPoint3(L(j)))
visual_ISAM2_plot(current_estimate)
# Clear the factor graph and values for the next iteration
graph.resize(0)
initial_estimate.clear()
plt.ioff()
plt.show()
if __name__ == '__main__':
visual_ISAM2_example()

View File

View File

@ -0,0 +1,36 @@
import math
import unittest
import numpy as np
import gtsam
class TestScenario(unittest.TestCase):
def setUp(self):
pass
def test_loop(self):
# Forward velocity 2m/s
# Pitch up with angular velocity 6 degree/sec (negative in FLU)
v = 2
w = math.radians(6)
W = np.array([0, -w, 0])
V = np.array([v, 0, 0])
scenario = gtsam.ConstantTwistScenario(W, V)
T = 30
np.testing.assert_almost_equal(W, scenario.omega_b(T))
np.testing.assert_almost_equal(V, scenario.velocity_b(T))
np.testing.assert_almost_equal(
np.cross(W, V), scenario.acceleration_b(T))
# R = v/w, so test if loop crests at 2*R
R = v / w
T30 = scenario.pose(T)
np.testing.assert_almost_equal(
np.array([math.pi, 0, math.pi]), T30.rotation().xyz())
self.assert_(gtsam.Point3(0, 0, 2 * R).equals(T30.translation(), 1e-9))
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,77 @@
"""Various plotting utlities."""
import numpy as np
import matplotlib.pyplot as plt
def plot_point3_on_axes(axes, point, linespec):
"""Plot a 3D point on given axis 'axes' with given 'linespec'."""
axes.plot([point.x()], [point.y()], [point.z()], linespec)
def plot_point3(fignum, point, linespec):
"""Plot a 3D point on given figure with given 'linespec'."""
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plot_point3_on_axes(axes, point, linespec)
def plot_3d_points(fignum, values, linespec, marginals=None):
"""
Plots the Point3s in 'values', with optional covariances.
Finds all the Point3 objects in the given Values object and plots them.
If a Marginals object is given, this function will also plot marginal
covariance ellipses for each point.
"""
keys = values.keys()
# Plot points and covariance matrices
for i in range(keys.size()):
try:
p = values.atPoint3(keys.at(i))
# if haveMarginals
# P = marginals.marginalCovariance(key);
# gtsam.plot_point3(p, linespec, P);
# else
plot_point3(fignum, p, linespec)
except RuntimeError:
continue
# I guess it's not a Point3
def plot_pose3_on_axes(axes, pose, axis_length=0.1):
"""Plot a 3D pose on given axis 'axes' with given 'axis_length'."""
# get rotation and translation (center)
gRp = pose.rotation().matrix() # rotation from pose to global
t = pose.translation()
origin = np.array([t.x(), t.y(), t.z()])
# draw the camera axes
x_axis = origin + gRp[:, 0] * axis_length
line = np.append(origin[np.newaxis], x_axis[np.newaxis], axis=0)
axes.plot(line[:, 0], line[:, 1], line[:, 2], 'r-')
y_axis = origin + gRp[:, 1] * axis_length
line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0)
axes.plot(line[:, 0], line[:, 1], line[:, 2], 'g-')
z_axis = origin + gRp[:, 2] * axis_length
line = np.append(origin[np.newaxis], z_axis[np.newaxis], axis=0)
axes.plot(line[:, 0], line[:, 1], line[:, 2], 'b-')
# plot the covariance
# TODO (dellaert): make this work
# if (nargin>2) && (~isempty(P))
# pPp = P(4:6,4:6); % covariance matrix in pose coordinate frame
# gPp = gRp*pPp*gRp'; % convert the covariance matrix to global coordinate frame
# gtsam.covarianceEllipse3D(origin,gPp);
# end
def plot_pose3(fignum, pose, axis_length=0.1):
"""Plot a 3D pose on given figure with given 'axis_length'."""
# get figure object
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plot_pose3_on_axes(axes, pose, axis_length)

View File

@ -306,10 +306,17 @@ public:
: cols), : cols),
stride stride
) {} ) {}
MapBase &operator=(const MatrixType &other) {
Base::operator=(other);
return *this;
}
virtual ~MapBase() { }
}; };
template <template<class,int,int,int,int,int> class DenseBase, template <template<class,int,int,int,int,int> class EigencyDenseBase,
typename Scalar, typename Scalar,
int _Rows, int _Cols, int _Rows, int _Cols,
int _Options = Eigen::AutoAlign | int _Options = Eigen::AutoAlign |
@ -341,16 +348,18 @@ template <template<class,int,int,int,int,int> class DenseBase,
int _StrideOuter=0, int _StrideInner=0, int _StrideOuter=0, int _StrideInner=0,
int _MaxRows = _Rows, int _MaxRows = _Rows,
int _MaxCols = _Cols> int _MaxCols = _Cols>
class FlattenedMap: public MapBase<DenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > { class FlattenedMap: public MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > {
public: public:
typedef MapBase<DenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > Base; typedef MapBase<EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, _MapOptions, Eigen::Stride<_StrideOuter, _StrideInner> > Base;
FlattenedMap() FlattenedMap()
: Base(NULL, 0, 0) {} : Base(NULL, 0, 0),
object_(NULL) {}
FlattenedMap(Scalar *data, long rows, long cols, long outer_stride=0, long inner_stride=0) FlattenedMap(Scalar *data, long rows, long cols, long outer_stride=0, long inner_stride=0)
: Base(data, rows, cols, : Base(data, rows, cols,
Eigen::Stride<_StrideOuter, _StrideInner>(outer_stride, inner_stride)) { Eigen::Stride<_StrideOuter, _StrideInner>(outer_stride, inner_stride)),
object_(NULL) {
} }
FlattenedMap(PyArrayObject *object) FlattenedMap(PyArrayObject *object)
@ -359,18 +368,26 @@ public:
(((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1, (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
(((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0], (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0],
Eigen::Stride<_StrideOuter, _StrideInner>(_StrideOuter != Eigen::Dynamic ? _StrideOuter : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1, Eigen::Stride<_StrideOuter, _StrideInner>(_StrideOuter != Eigen::Dynamic ? _StrideOuter : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[0] : 1,
_StrideInner != Eigen::Dynamic ? _StrideInner : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0])) { _StrideInner != Eigen::Dynamic ? _StrideInner : (((PyArrayObject*)object)->nd == 2) ? ((PyArrayObject*)object)->dimensions[1] : ((PyArrayObject*)object)->dimensions[0])),
object_(object) {
if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object)) if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map."); throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
Py_XINCREF(object_);
} }
FlattenedMap &operator=(const FlattenedMap &other) { FlattenedMap &operator=(const FlattenedMap &other) {
// Replace the memory that we point to (not a memory allocation) if (other.object_) {
new (this) FlattenedMap(const_cast<Scalar*>(other.data()), new (this) FlattenedMap(other.object_);
other.rows(), } else {
other.cols(), // Replace the memory that we point to (not a memory allocation)
other.outerStride(), new (this) FlattenedMap(const_cast<Scalar*>(other.data()),
other.innerStride()); other.rows(),
other.cols(),
other.outerStride(),
other.innerStride());
}
return *this; return *this;
} }
@ -382,9 +399,16 @@ public:
return static_cast<Base&>(*this); return static_cast<Base&>(*this);
} }
operator DenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>() const { operator EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>() const {
return DenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>(static_cast<Base>(*this)); return EigencyDenseBase<Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>(static_cast<Base>(*this));
} }
virtual ~FlattenedMap() {
Py_XDECREF(object_);
}
private:
PyArrayObject * const object_;
}; };
@ -394,39 +418,60 @@ public:
typedef MapBase<MatrixType> Base; typedef MapBase<MatrixType> Base;
typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Scalar Scalar;
enum {
RowsAtCompileTime = Base::Base::RowsAtCompileTime,
ColsAtCompileTime = Base::Base::ColsAtCompileTime
};
Map() Map()
: Base(NULL, 0, 0) { : Base(NULL,
(RowsAtCompileTime == Eigen::Dynamic) ? 0 : RowsAtCompileTime,
(ColsAtCompileTime == Eigen::Dynamic) ? 0 : ColsAtCompileTime),
object_(NULL) {
} }
Map(Scalar *data, long rows, long cols) Map(Scalar *data, long rows, long cols)
: Base(data, rows, cols) {} : Base(data, rows, cols),
object_(NULL) {}
Map(PyArrayObject *object) Map(PyArrayObject *object)
: Base((PyObject*)object == Py_None? NULL: (Scalar *)object->data, : Base((PyObject*)object == Py_None? NULL: (Scalar *)object->data,
// ROW: If array is in row-major order, transpose (see README) // ROW: If array is in row-major order, transpose (see README)
(PyObject*)object == Py_None? 0 : (PyObject*)object == Py_None? 0 :
(PyArray_IS_C_CONTIGUOUS(object) (!PyArray_IS_F_CONTIGUOUS(object)
? ((object->nd == 1) ? ((object->nd == 1)
? 1 // ROW: If 1D row-major numpy array, set to 1 (row vector) ? 1 // ROW: If 1D row-major numpy array, set to 1 (row vector)
: object->dimensions[1]) : object->dimensions[1])
: object->dimensions[0]), : object->dimensions[0]),
// COLUMN: If array is in row-major order: transpose (see README) // COLUMN: If array is in row-major order: transpose (see README)
(PyObject*)object == Py_None? 0 : (PyObject*)object == Py_None? 0 :
(PyArray_IS_C_CONTIGUOUS(object) (!PyArray_IS_F_CONTIGUOUS(object)
? object->dimensions[0] ? object->dimensions[0]
: ((object->nd == 1) : ((object->nd == 1)
? 1 // COLUMN: If 1D col-major numpy array, set to length (column vector) ? 1 // COLUMN: If 1D col-major numpy array, set to length (column vector)
: object->dimensions[1]))) { : object->dimensions[1]))),
object_(object) {
if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object)) if (((PyObject*)object != Py_None) && !PyArray_ISONESEGMENT(object))
throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map."); throw std::invalid_argument("Numpy array must be a in one contiguous segment to be able to be transferred to a Eigen Map.");
Py_XINCREF(object_);
} }
Map &operator=(const Map &other) { Map &operator=(const Map &other) {
// Replace the memory that we point to (not a memory allocation) if (other.object_) {
new (this) Map(const_cast<Scalar*>(other.data()), new (this) Map(other.object_);
other.rows(), } else {
other.cols()); // Replace the memory that we point to (not a memory allocation)
new (this) Map(const_cast<Scalar*>(other.data()),
other.rows(),
other.cols());
}
return *this;
}
Map &operator=(const MatrixType &other) {
MapBase<MatrixType>::operator=(other);
return *this; return *this;
} }
@ -440,7 +485,14 @@ public:
operator MatrixType() const { operator MatrixType() const {
return MatrixType(static_cast<Base>(*this)); return MatrixType(static_cast<Base>(*this));
} }
virtual ~Map() {
Py_XDECREF(object_);
}
private:
PyArrayObject * const object_;
}; };

View File

@ -0,0 +1,136 @@
#include <gtsam/geometry/SimpleCamera.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/Scenario.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <vector>
using namespace std;
using namespace gtsam;
// Shorthand for velocity and pose variables
using symbol_shorthand::V;
using symbol_shorthand::X;
const double kGravity = 9.81;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
auto params = PreintegrationParams::MakeSharedU(kGravity);
params->setAccelerometerCovariance(I_3x3 * 0.1);
params->setGyroscopeCovariance(I_3x3 * 0.1);
params->setIntegrationCovariance(I_3x3 * 0.1);
params->setUse2ndOrderCoriolis(false);
params->setOmegaCoriolis(Vector3(0, 0, 0));
Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
// Start with a camera on x-axis looking at origin
double radius = 30;
const Point3 up(0, 0, 1), target(0, 0, 0);
const Point3 position(radius, 0, 0);
const SimpleCamera camera = SimpleCamera::Lookat(position, target, up);
const auto pose_0 = camera.pose();
// Now, create a constant-twist scenario that makes the camera orbit the
// origin
double angular_velocity = M_PI, // rad/sec
delta_t = 1.0 / 18; // makes for 10 degrees per step
Vector3 angular_velocity_vector(0, -angular_velocity, 0);
Vector3 linear_velocity_vector(radius * angular_velocity, 0, 0);
auto scenario = ConstantTwistScenario(angular_velocity_vector,
linear_velocity_vector, pose_0);
// Create a factor graph
NonlinearFactorGraph newgraph;
// Create (incremental) ISAM2 solver
ISAM2 isam;
// Create the initial estimate to the solution
// Intentionally initialize the variables off from the ground truth
Values initialEstimate, totalEstimate, result;
// Add a prior on pose x0. This indirectly specifies where the origin is.
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
auto noise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
newgraph.push_back(PriorFactor<Pose3>(X(0), pose_0, noise));
// Add imu priors
Key biasKey = Symbol('b', 0);
auto biasnoise = noiseModel::Diagonal::Sigmas(Vector6::Constant(0.1));
PriorFactor<imuBias::ConstantBias> biasprior(biasKey, imuBias::ConstantBias(),
biasnoise);
newgraph.push_back(biasprior);
initialEstimate.insert(biasKey, imuBias::ConstantBias());
auto velnoise = noiseModel::Diagonal::Sigmas(Vector3(0.1, 0.1, 0.1));
Vector n_velocity(3);
n_velocity << 0, angular_velocity * radius, 0;
PriorFactor<Vector> velprior(V(0), n_velocity, velnoise);
newgraph.push_back(velprior);
initialEstimate.insert(V(0), n_velocity);
// IMU preintegrator
PreintegratedImuMeasurements accum(params);
// Simulate poses and imu measurements, adding them to the factor graph
for (size_t i = 0; i < 36; ++i) {
double t = i * delta_t;
if (i == 0) { // First time add two poses
auto pose_1 = scenario.pose(delta_t);
initialEstimate.insert(X(0), pose_0.compose(delta));
initialEstimate.insert(X(1), pose_1.compose(delta));
} else if (i >= 2) { // Add more poses as necessary
auto pose_i = scenario.pose(t);
initialEstimate.insert(X(i), pose_i.compose(delta));
}
if (i > 0) {
// Add Bias variables periodically
if (i % 5 == 0) {
biasKey++;
Symbol b1 = biasKey - 1;
Symbol b2 = biasKey;
Vector6 covvec;
covvec << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1;
auto cov = noiseModel::Diagonal::Variances(covvec);
Vector6 zerovec;
zerovec << 0, 0, 0, 0, 0, 0;
auto f = boost::make_shared<BetweenFactor<imuBias::ConstantBias> >(
b1, b2, imuBias::ConstantBias(), cov);
newgraph.add(f);
initialEstimate.insert(biasKey, imuBias::ConstantBias());
}
// Predict acceleration and gyro measurements in (actual) body frame
auto measuredAcc = scenario.acceleration_b(t) -
scenario.rotation(t).transpose() * params->n_gravity;
auto measuredOmega = scenario.omega_b(t);
accum.integrateMeasurement(measuredAcc, measuredOmega, delta_t);
// Add Imu Factor
ImuFactor imufac(X(i - 1), V(i - 1), X(i), V(i), biasKey, accum);
newgraph.add(imufac);
// insert new velocity, which is wrong
initialEstimate.insert(V(i), n_velocity);
accum.resetIntegration();
}
// Incremental solution
isam.update(newgraph, initialEstimate);
result = isam.calculateEstimate();
newgraph = NonlinearFactorGraph();
initialEstimate.clear();
}
GTSAM_PRINT(result);
return 0;
}
/* ************************************************************************* */

82
gtsam.h
View File

@ -568,7 +568,7 @@ class Pose2 {
static gtsam::Pose2 Expmap(Vector v); static gtsam::Pose2 Expmap(Vector v);
static Vector Logmap(const gtsam::Pose2& p); static Vector Logmap(const gtsam::Pose2& p);
Matrix AdjointMap() const; Matrix AdjointMap() const;
Vector Adjoint(const Vector& xi) const; Vector Adjoint(Vector xi) const;
static Matrix wedge(double vx, double vy, double w); static Matrix wedge(double vx, double vy, double w);
// Group Actions on Point2 // Group Actions on Point2
@ -865,7 +865,7 @@ class CalibratedCamera {
// Standard Constructors and Named Constructors // Standard Constructors and Named Constructors
CalibratedCamera(); CalibratedCamera();
CalibratedCamera(const gtsam::Pose3& pose); CalibratedCamera(const gtsam::Pose3& pose);
CalibratedCamera(const Vector& v); CalibratedCamera(Vector v);
static gtsam::CalibratedCamera Level(const gtsam::Pose2& pose2, double height); static gtsam::CalibratedCamera Level(const gtsam::Pose2& pose2, double height);
// Testable // Testable
@ -875,7 +875,7 @@ class CalibratedCamera {
// Manifold // Manifold
static size_t Dim(); static size_t Dim();
size_t dim() const; size_t dim() const;
gtsam::CalibratedCamera retract(const Vector& d) const; gtsam::CalibratedCamera retract(Vector d) const;
Vector localCoordinates(const gtsam::CalibratedCamera& T2) const; Vector localCoordinates(const gtsam::CalibratedCamera& T2) const;
// Action on Point3 // Action on Point3
@ -911,7 +911,7 @@ class PinholeCamera {
CALIBRATION calibration() const; CALIBRATION calibration() const;
// Manifold // Manifold
This retract(const Vector& d) const; This retract(Vector d) const;
Vector localCoordinates(const This& T2) const; Vector localCoordinates(const This& T2) const;
size_t dim() const; size_t dim() const;
static size_t Dim(); static size_t Dim();
@ -938,6 +938,8 @@ virtual class SimpleCamera {
static gtsam::SimpleCamera Level(const gtsam::Pose2& pose, double height); static gtsam::SimpleCamera Level(const gtsam::Pose2& pose, double height);
static gtsam::SimpleCamera Lookat(const gtsam::Point3& eye, const gtsam::Point3& target, static gtsam::SimpleCamera Lookat(const gtsam::Point3& eye, const gtsam::Point3& target,
const gtsam::Point3& upVector, const gtsam::Cal3_S2& K); const gtsam::Point3& upVector, const gtsam::Cal3_S2& K);
static gtsam::SimpleCamera Lookat(const gtsam::Point3& eye, const gtsam::Point3& target,
const gtsam::Point3& upVector);
// Testable // Testable
void print(string s) const; void print(string s) const;
@ -948,7 +950,7 @@ virtual class SimpleCamera {
gtsam::Cal3_S2 calibration() const; gtsam::Cal3_S2 calibration() const;
// Manifold // Manifold
gtsam::SimpleCamera retract(const Vector& d) const; gtsam::SimpleCamera retract(Vector d) const;
Vector localCoordinates(const gtsam::SimpleCamera& T2) const; Vector localCoordinates(const gtsam::SimpleCamera& T2) const;
size_t dim() const; size_t dim() const;
static size_t Dim(); static size_t Dim();
@ -990,7 +992,7 @@ class StereoCamera {
gtsam::Cal3_S2Stereo calibration() const; gtsam::Cal3_S2Stereo calibration() const;
// Manifold // Manifold
gtsam::StereoCamera retract(const Vector& d) const; gtsam::StereoCamera retract(Vector d) const;
Vector localCoordinates(const gtsam::StereoCamera& T2) const; Vector localCoordinates(const gtsam::StereoCamera& T2) const;
size_t dim() const; size_t dim() const;
static size_t Dim(); static size_t Dim();
@ -1225,12 +1227,12 @@ virtual class Diagonal : gtsam::noiseModel::Gaussian {
}; };
virtual class Constrained : gtsam::noiseModel::Diagonal { virtual class Constrained : gtsam::noiseModel::Diagonal {
static gtsam::noiseModel::Constrained* MixedSigmas(const Vector& mu, const Vector& sigmas); static gtsam::noiseModel::Constrained* MixedSigmas(Vector mu, Vector sigmas);
static gtsam::noiseModel::Constrained* MixedSigmas(double m, const Vector& sigmas); static gtsam::noiseModel::Constrained* MixedSigmas(double m, Vector sigmas);
static gtsam::noiseModel::Constrained* MixedVariances(const Vector& mu, const Vector& variances); static gtsam::noiseModel::Constrained* MixedVariances(Vector mu, Vector variances);
static gtsam::noiseModel::Constrained* MixedVariances(const Vector& variances); static gtsam::noiseModel::Constrained* MixedVariances(Vector variances);
static gtsam::noiseModel::Constrained* MixedPrecisions(const Vector& mu, const Vector& precisions); static gtsam::noiseModel::Constrained* MixedPrecisions(Vector mu, Vector precisions);
static gtsam::noiseModel::Constrained* MixedPrecisions(const Vector& precisions); static gtsam::noiseModel::Constrained* MixedPrecisions(Vector precisions);
static gtsam::noiseModel::Constrained* All(size_t dim); static gtsam::noiseModel::Constrained* All(size_t dim);
static gtsam::noiseModel::Constrained* All(size_t dim, double mu); static gtsam::noiseModel::Constrained* All(size_t dim, double mu);
@ -1413,12 +1415,12 @@ virtual class JacobianFactor : gtsam::GaussianFactor {
pair<Matrix, Vector> jacobianUnweighted() const; pair<Matrix, Vector> jacobianUnweighted() const;
Matrix augmentedJacobianUnweighted() const; Matrix augmentedJacobianUnweighted() const;
void transposeMultiplyAdd(double alpha, const Vector& e, gtsam::VectorValues& x) const; void transposeMultiplyAdd(double alpha, Vector e, gtsam::VectorValues& x) const;
gtsam::JacobianFactor whiten() const; gtsam::JacobianFactor whiten() const;
pair<gtsam::GaussianConditional*, gtsam::JacobianFactor*> eliminate(const gtsam::Ordering& keys) const; pair<gtsam::GaussianConditional*, gtsam::JacobianFactor*> eliminate(const gtsam::Ordering& keys) const;
void setModel(bool anyConstrained, const Vector& sigmas); void setModel(bool anyConstrained, Vector sigmas);
gtsam::noiseModel::Diagonal* get_model() const; gtsam::noiseModel::Diagonal* get_model() const;
@ -2502,6 +2504,11 @@ class NavState {
#include <gtsam/navigation/PreintegratedRotation.h> #include <gtsam/navigation/PreintegratedRotation.h>
virtual class PreintegratedRotationParams { virtual class PreintegratedRotationParams {
PreintegratedRotationParams(); PreintegratedRotationParams();
// Testable
void print(string s) const;
bool equals(const gtsam::PreintegratedRotationParams& expected, double tol);
void setGyroscopeCovariance(Matrix cov); void setGyroscopeCovariance(Matrix cov);
void setOmegaCoriolis(Vector omega); void setOmegaCoriolis(Vector omega);
void setBodyPSensor(const gtsam::Pose3& pose); void setBodyPSensor(const gtsam::Pose3& pose);
@ -2509,13 +2516,23 @@ virtual class PreintegratedRotationParams {
Matrix getGyroscopeCovariance() const; Matrix getGyroscopeCovariance() const;
// TODO(frank): allow optional // TODO(frank): allow optional
// boost::optional<Vector3> getOmegaCoriolis() const; // boost::optional<Vector> getOmegaCoriolis() const;
// boost::optional<Pose3> getBodyPSensor() const; // boost::optional<Pose3> getBodyPSensor() const;
}; };
#include <gtsam/navigation/PreintegrationParams.h> #include <gtsam/navigation/PreintegrationParams.h>
virtual class PreintegrationParams : gtsam::PreintegratedRotationParams { virtual class PreintegrationParams : gtsam::PreintegratedRotationParams {
PreintegrationParams(Vector n_gravity); PreintegrationParams(Vector n_gravity);
static gtsam::PreintegrationParams* MakeSharedD(double g);
static gtsam::PreintegrationParams* MakeSharedU(double g);
static gtsam::PreintegrationParams* MakeSharedD(); // default g = 9.81
static gtsam::PreintegrationParams* MakeSharedU(); // default g = 9.81
// Testable
void print(string s) const;
bool equals(const gtsam::PreintegrationParams& expected, double tol);
void setAccelerometerCovariance(Matrix cov); void setAccelerometerCovariance(Matrix cov);
void setIntegrationCovariance(Matrix cov); void setIntegrationCovariance(Matrix cov);
void setUse2ndOrderCoriolis(bool flag); void setUse2ndOrderCoriolis(bool flag);
@ -2523,7 +2540,6 @@ virtual class PreintegrationParams : gtsam::PreintegratedRotationParams {
Matrix getAccelerometerCovariance() const; Matrix getAccelerometerCovariance() const;
Matrix getIntegrationCovariance() const; Matrix getIntegrationCovariance() const;
bool getUse2ndOrderCoriolis() const; bool getUse2ndOrderCoriolis() const;
void print(string s) const;
}; };
#include <gtsam/navigation/ImuFactor.h> #include <gtsam/navigation/ImuFactor.h>
@ -2649,10 +2665,12 @@ virtual class Rot3AttitudeFactor : gtsam::NonlinearFactor{
gtsam::Unit3 bRef() const; gtsam::Unit3 bRef() const;
}; };
virtual class Pose3AttitudeFactor : gtsam::NonlinearFactor{ virtual class Pose3AttitudeFactor : gtsam::NonlinearFactor {
Pose3AttitudeFactor(size_t key, const gtsam::Unit3& nZ, const gtsam::noiseModel::Diagonal* model, Pose3AttitudeFactor(size_t key, const gtsam::Unit3& nZ,
const gtsam::Unit3& bRef); const gtsam::noiseModel::Diagonal* model,
Pose3AttitudeFactor(size_t key, const gtsam::Unit3& nZ, const gtsam::noiseModel::Diagonal* model); const gtsam::Unit3& bRef);
Pose3AttitudeFactor(size_t key, const gtsam::Unit3& nZ,
const gtsam::noiseModel::Diagonal* model);
Pose3AttitudeFactor(); Pose3AttitudeFactor();
void print(string s) const; void print(string s) const;
bool equals(const gtsam::NonlinearFactor& expected, double tol) const; bool equals(const gtsam::NonlinearFactor& expected, double tol) const;
@ -2660,6 +2678,30 @@ virtual class Pose3AttitudeFactor : gtsam::NonlinearFactor{
gtsam::Unit3 bRef() const; gtsam::Unit3 bRef() const;
}; };
#include <gtsam/navigation/Scenario.h>
virtual class Scenario {
gtsam::Pose3 pose(double t) const;
Vector omega_b(double t) const;
Vector velocity_n(double t) const;
Vector acceleration_n(double t) const;
gtsam::Rot3 rotation(double t) const;
gtsam::NavState navState(double t) const;
Vector velocity_b(double t) const;
Vector acceleration_b(double t) const;
};
virtual class ConstantTwistScenario : gtsam::Scenario {
ConstantTwistScenario(Vector w, Vector v);
ConstantTwistScenario(Vector w, Vector v,
const Pose3& nTb0);
};
virtual class AcceleratingScenario : gtsam::Scenario {
AcceleratingScenario(const gtsam::Rot3& nRb, const gtsam::Point3& p0,
Vector v0, Vector a_n,
Vector omega_b);
};
//************************************************************************* //*************************************************************************
// Utilities // Utilities
//************************************************************************* //*************************************************************************

111
gtsam/geometry/Unit3.cpp Normal file → Executable file
View File

@ -65,69 +65,76 @@ Unit3 Unit3::Random(boost::mt19937 & rng) {
return Unit3(d[0], d[1], d[2]); return Unit3(d[0], d[1], d[2]);
} }
/* ************************************************************************* */
// Get the axis of rotation with the minimum projected length of the point
static Point3 CalculateBestAxis(const Point3& n) {
double mx = fabs(n.x()), my = fabs(n.y()), mz = fabs(n.z());
if ((mx <= my) && (mx <= mz)) {
return Point3(1.0, 0.0, 0.0);
} else if ((my <= mx) && (my <= mz)) {
return Point3(0.0, 1.0, 0.0);
} else {
return Point3(0, 0, 1);
}
}
/* ************************************************************************* */ /* ************************************************************************* */
const Matrix32& Unit3::basis(OptionalJacobian<6, 2> H) const { const Matrix32& Unit3::basis(OptionalJacobian<6, 2> H) const {
#ifdef GTSAM_USE_TBB #ifdef GTSAM_USE_TBB
// NOTE(hayk): At some point it seemed like this reproducably resulted in deadlock. However, I // NOTE(hayk): At some point it seemed like this reproducably resulted in
// can't see the reason why and I can no longer reproduce it. It may have been a red herring, or // deadlock. However, I don't know why and I can no longer reproduce it.
// there is still a latent bug to watch out for. // It either was a red herring or there is still a latent bug left to debug.
tbb::mutex::scoped_lock lock(B_mutex_); tbb::mutex::scoped_lock lock(B_mutex_);
#endif #endif
// Return cached basis if available and the Jacobian isn't needed. const bool cachedBasis = static_cast<bool>(B_);
if (B_ && !H) { const bool cachedJacobian = static_cast<bool>(H_B_);
return *B_;
}
// Return cached basis and derivatives if available.
if (B_ && H && H_B_) {
*H = *H_B_;
return *B_;
}
// Get the unit vector and derivative wrt this.
// NOTE(hayk): We can't call point3(), because it would recursively call basis().
const Point3 n(p_);
// Get the axis of rotation with the minimum projected length of the point
Point3 axis(0, 0, 1);
double mx = fabs(n.x()), my = fabs(n.y()), mz = fabs(n.z());
if ((mx <= my) && (mx <= mz)) {
axis = Point3(1.0, 0.0, 0.0);
} else if ((my <= mx) && (my <= mz)) {
axis = Point3(0.0, 1.0, 0.0);
}
// Choose the direction of the first basis vector b1 in the tangent plane by crossing n with
// the chosen axis.
Matrix33 H_B1_n;
Point3 B1 = gtsam::cross(n, axis, H ? &H_B1_n : nullptr);
// Normalize result to get a unit vector: b1 = B1 / |B1|.
Matrix33 H_b1_B1;
Point3 b1 = normalize(B1, H ? &H_b1_B1 : nullptr);
// Get the second basis vector b2, which is orthogonal to n and b1, by crossing them.
// No need to normalize this, p and b1 are orthogonal unit vectors.
Matrix33 H_b2_n, H_b2_b1;
Point3 b2 = gtsam::cross(n, b1, H ? &H_b2_n : nullptr, H ? &H_b2_b1 : nullptr);
// Create the basis by stacking b1 and b2.
B_.reset(Matrix32());
(*B_) << b1.x(), b2.x(), b1.y(), b2.y(), b1.z(), b2.z();
if (H) { if (H) {
// Chain rule tomfoolery to compute the derivative. if (!cachedJacobian) {
const Matrix32& H_n_p = *B_; // Compute Jacobian. Recomputes B_
const Matrix32 H_b1_p = H_b1_B1 * H_B1_n * H_n_p; Matrix32 B;
const Matrix32 H_b2_p = H_b2_n * H_n_p + H_b2_b1 * H_b1_p; Matrix62 jacobian;
Matrix33 H_B1_n, H_b1_B1, H_b2_n, H_b2_b1;
// Cache the derivative and fill the result. // Choose the direction of the first basis vector b1 in the tangent plane
H_B_.reset(Matrix62()); // by crossing n with the chosen axis.
(*H_B_) << H_b1_p, H_b2_p; const Point3 n(p_), axis = CalculateBestAxis(n);
const Point3 B1 = gtsam::cross(n, axis, &H_B1_n);
// Normalize result to get a unit vector: b1 = B1 / |B1|.
B.col(0) = normalize(B1, &H_b1_B1);
// Get the second basis vector b2, which is orthogonal to n and b1.
B.col(1) = gtsam::cross(n, B.col(0), &H_b2_n, &H_b2_b1);
// Chain rule tomfoolery to compute the jacobian.
const Matrix32& H_n_p = B;
jacobian.block<3, 2>(0, 0) = H_b1_B1 * H_B1_n * H_n_p;
auto H_b1_p = jacobian.block<3, 2>(0, 0);
jacobian.block<3, 2>(3, 0) = H_b2_n * H_n_p + H_b2_b1 * H_b1_p;
// Cache the result and jacobian
H_B_.reset(jacobian);
B_.reset(B);
}
// Return cached jacobian, possibly computed just above
*H = *H_B_; *H = *H_B_;
} }
if (!cachedBasis) {
// Same calculation as above, without derivatives.
// Done after H block, as that possibly computes B_ for the first time
Matrix32 B;
const Point3 n(p_), axis = CalculateBestAxis(n);
const Point3 B1 = gtsam::cross(n, axis);
B.col(0) = normalize(B1);
B.col(1) = gtsam::cross(n, B.col(0));
B_.reset(B);
}
return *B_; return *B_;
} }
@ -257,7 +264,7 @@ Unit3 Unit3::retract(const Vector2& v) const {
std::cos(theta) * p_ + xi_hat * (sin(theta) / theta); std::cos(theta) * p_ + xi_hat * (sin(theta) / theta);
return Unit3(exp_p_xi_hat); return Unit3(exp_p_xi_hat);
} }
/* ************************************************************************* */ /* ************************************************************************* */
Vector2 Unit3::localCoordinates(const Unit3& other) const { Vector2 Unit3::localCoordinates(const Unit3& other) const {
const double x = p_.dot(other.p_); const double x = p_.dot(other.p_);

View File

@ -314,15 +314,24 @@ TEST(Unit3, basis) {
Unit3 p(0.1, -0.2, 0.9); Unit3 p(0.1, -0.2, 0.9);
Matrix expected(3, 2); Matrix expected(3, 2);
expected << 0.0, -0.994169047, 0.97618706, expected << 0.0, -0.994169047, 0.97618706, -0.0233922129, 0.216930458, 0.105264958;
-0.0233922129, 0.216930458, 0.105264958;
Matrix62 actualH; Matrix62 actualH;
Matrix actual = p.basis(actualH);
EXPECT(assert_equal(expected, actual, 1e-6));
Matrix62 expectedH = numericalDerivative11<Vector6, Unit3>( Matrix62 expectedH = numericalDerivative11<Vector6, Unit3>(
boost::bind(BasisTest, _1, boost::none), p); boost::bind(BasisTest, _1, boost::none), p);
// without H, first time
EXPECT(assert_equal(expected, p.basis(), 1e-6));
// without H, cached
EXPECT(assert_equal(expected, p.basis(), 1e-6));
// with H, first time
EXPECT(assert_equal(expected, p.basis(actualH), 1e-6));
EXPECT(assert_equal(expectedH, actualH, 1e-8));
// with H, cached
EXPECT(assert_equal(expected, p.basis(actualH), 1e-6));
EXPECT(assert_equal(expectedH, actualH, 1e-8)); EXPECT(assert_equal(expectedH, actualH, 1e-8));
} }
@ -432,7 +441,8 @@ TEST(Unit3, ErrorBetweenFactor) {
// Add process factors using the dot product error function. // Add process factors using the dot product error function.
SharedNoiseModel R_process = noiseModel::Isotropic::Sigma(2, 0.01); SharedNoiseModel R_process = noiseModel::Isotropic::Sigma(2, 0.01);
for (size_t i = 0; i < data.size() - 1; i++) { for (size_t i = 0; i < data.size() - 1; i++) {
Expression<Vector2> exp(Expression<Unit3>(U(i)), &Unit3::errorVector, Expression<Unit3>(U(i + 1))); Expression<Vector2> exp(Expression<Unit3>(U(i)), &Unit3::errorVector,
Expression<Unit3>(U(i + 1)));
graph.addExpressionFactor<Vector2>(R_process, Vector2::Zero(), exp); graph.addExpressionFactor<Vector2>(R_process, Vector2::Zero(), exp);
} }

View File

@ -70,9 +70,6 @@ Scatter::Scatter(const GaussianFactorGraph& gfg,
iterator first = begin(); iterator first = begin();
if (ordering) first += ordering->size(); if (ordering) first += ordering->size();
if (first != end()) std::sort(first, end()); if (first != end()) std::sort(first, end());
// Filter out keys with zero dimensions (if ordering had more keys)
erase(std::remove_if(begin(), end(), SlotEntry::Zero), end());
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -57,10 +57,13 @@ class Scenario {
class ConstantTwistScenario : public Scenario { class ConstantTwistScenario : public Scenario {
public: public:
/// Construct scenario with constant twist [w,v] /// Construct scenario with constant twist [w,v]
ConstantTwistScenario(const Vector3& w, const Vector3& v) ConstantTwistScenario(const Vector3& w, const Vector3& v,
: twist_((Vector6() << w, v).finished()), a_b_(w.cross(v)) {} const Pose3& nTb0 = Pose3())
: twist_((Vector6() << w, v).finished()), a_b_(w.cross(v)), nTb0_(nTb0) {}
Pose3 pose(double t) const override { return Pose3::Expmap(twist_ * t); } Pose3 pose(double t) const override {
return nTb0_ * Pose3::Expmap(twist_ * t);
}
Vector3 omega_b(double t) const override { return twist_.head<3>(); } Vector3 omega_b(double t) const override { return twist_.head<3>(); }
Vector3 velocity_n(double t) const override { Vector3 velocity_n(double t) const override {
return rotation(t).matrix() * twist_.tail<3>(); return rotation(t).matrix() * twist_.tail<3>();
@ -70,6 +73,7 @@ class ConstantTwistScenario : public Scenario {
private: private:
const Vector6 twist_; const Vector6 twist_;
const Vector3 a_b_; // constant centripetal acceleration in body = w_b * v_b const Vector3 a_b_; // constant centripetal acceleration in body = w_b * v_b
const Pose3 nTb0_;
}; };
/// Accelerating from an arbitrary initial state, with optional rotation /// Accelerating from an arbitrary initial state, with optional rotation

View File

@ -15,8 +15,8 @@
* @author Frank Dellaert * @author Frank Dellaert
*/ */
#include <gtsam/navigation/Scenario.h>
#include <gtsam/base/numericalDerivative.h> #include <gtsam/base/numericalDerivative.h>
#include <gtsam/navigation/Scenario.h>
#include <CppUnitLite/TestHarness.h> #include <CppUnitLite/TestHarness.h>
#include <boost/bind.hpp> #include <boost/bind.hpp>
@ -96,9 +96,33 @@ TEST(Scenario, Loop) {
const double R = v / w; const double R = v / w;
const Pose3 T30 = scenario.pose(30); const Pose3 T30 = scenario.pose(30);
EXPECT(assert_equal(Rot3::Rodrigues(0, M_PI, 0), T30.rotation(), 1e-9)); EXPECT(assert_equal(Rot3::Rodrigues(0, M_PI, 0), T30.rotation(), 1e-9));
EXPECT(assert_equal(Vector3(M_PI, 0, M_PI), T30.rotation().xyz()));
EXPECT(assert_equal(Point3(0, 0, 2 * R), T30.translation(), 1e-9)); EXPECT(assert_equal(Point3(0, 0, 2 * R), T30.translation(), 1e-9));
} }
/* ************************************************************************* */
TEST(Scenario, LoopWithInitialPose) {
// Forward velocity 2m/s
// Pitch up with angular velocity 6 kDegree/sec (negative in FLU)
const double v = 2, w = 6 * kDegree;
const Vector3 W(0, -w, 0), V(v, 0, 0);
const Rot3 nRb0 = Rot3::yaw(M_PI);
const Pose3 nTb0(nRb0, Point3(1, 2, 3));
const ConstantTwistScenario scenario(W, V, nTb0);
const double T = 30;
EXPECT(assert_equal(W, scenario.omega_b(T), 1e-9));
EXPECT(assert_equal(V, scenario.velocity_b(T), 1e-9));
EXPECT(assert_equal(W.cross(V), scenario.acceleration_b(T), 1e-9));
// R = v/w, so test if loop crests at 2*R
const double R = v / w;
const Pose3 T30 = scenario.pose(30);
EXPECT(
assert_equal(nRb0 * Rot3::Rodrigues(0, M_PI, 0), T30.rotation(), 1e-9));
EXPECT(assert_equal(Point3(1, 2, 3 + 2 * R), T30.translation(), 1e-9));
}
/* ************************************************************************* */ /* ************************************************************************* */
TEST(Scenario, Accelerating) { TEST(Scenario, Accelerating) {
// Set up body pointing towards y axis, and start at 10,20,0 with velocity // Set up body pointing towards y axis, and start at 10,20,0 with velocity

View File

@ -113,9 +113,9 @@ struct LevenbergMarquardtState : public NonlinearOptimizerState {
// Small cache of A|b|model indexed by dimension. Can save many mallocs. // Small cache of A|b|model indexed by dimension. Can save many mallocs.
mutable std::vector<CachedModel> noiseModelCache; mutable std::vector<CachedModel> noiseModelCache;
CachedModel* getCachedModel(size_t dim) const { CachedModel* getCachedModel(size_t dim) const {
if (dim > noiseModelCache.size()) if (dim >= noiseModelCache.size())
noiseModelCache.resize(dim); noiseModelCache.resize(dim+1);
CachedModel* item = &noiseModelCache[dim - 1]; CachedModel* item = &noiseModelCache[dim];
if (!item->model) if (!item->model)
*item = CachedModel(dim, 1.0 / std::sqrt(lambda)); *item = CachedModel(dim, 1.0 / std::sqrt(lambda));
return item; return item;

View File

@ -121,17 +121,18 @@ class SmartRangeFactor: public NoiseModelFactor {
// use best fh to find actual intersection points // use best fh to find actual intersection points
if (bestCircle2 && best_fh) { if (bestCircle2 && best_fh) {
std::list<Point2> intersections = circleCircleIntersection( auto bestCircleCenter = bestCircle2->center;
circle1.center, bestCircle2->center, best_fh); std::list<Point2> intersections =
circleCircleIntersection(circle1.center, bestCircleCenter, best_fh);
// pick winner based on other measurements // pick winner based on other measurements
double error1 = 0, error2 = 0; double error1 = 0, error2 = 0;
Point2 p1 = intersections.front(), p2 = intersections.back(); Point2 p1 = intersections.front(), p2 = intersections.back();
for (const Circle2& it : circles) { for (const Circle2& it : circles) {
error1 += distance2(it.center, p1); error1 += distance2(it.center, p1);
error2 += distance2(it.center, p2); error2 += distance2(it.center, p2);
} }
return (error1 < error2) ? p1 : p2; return (error1 < error2) ? p1 : p2;
} else { } else {
throw std::runtime_error("triangulate failed"); throw std::runtime_error("triangulate failed");
} }

View File

@ -106,7 +106,7 @@ void Method::emit_cython_pyx_no_overload(FileWriter& file,
// leverage python's special treatment for print // leverage python's special treatment for print
if (funcName == "print_") { if (funcName == "print_") {
file.oss << " def __str__(self):\n"; file.oss << " def __repr__(self):\n";
file.oss << " strBuf = RedirectCout()\n"; file.oss << " strBuf = RedirectCout()\n";
file.oss << " self.print_('')\n"; file.oss << " self.print_('')\n";
file.oss << " return strBuf.str()\n"; file.oss << " return strBuf.str()\n";