Added IMU factors to ground truth factor graph.

release/4.3a0
djensen3 2014-04-10 13:26:10 -04:00
parent a58d00c0f9
commit a92b3b2339
1 changed files with 74 additions and 17 deletions

View File

@ -9,10 +9,30 @@ clear all
close all
%% Configuration
useAspnData = 1; % controls whether or not to use the ASPN data for scenario 2 as the ground truth traj
useAspnData = 0; % controls whether or not to use the ASPN data for scenario 2 as the ground truth traj
includeIMUFactors = 1; % if true, IMU type 1 Factors will be generated for the random trajectory
includeCameraFactors = 0;
trajectoryLength = 50;
deltaT = 1.0; % amount of time between IMU measurements
vel = [0 0 0]; % initial velocity (used for generating IMU measurements
g = [0; 0; 0]; % gravity
omegaCoriolis = [0; 0; 0]; % Coriolis
% Imu metadata
epsBias = 1e-20;
zeroBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1)); % bias is not of interest and is set to zero
IMU_metadata.AccelerometerSigma = 1e-5;
IMU_metadata.GyroscopeSigma = 1e-7;
IMU_metadata.IntegrationSigma = 1e-10;
IMU_metadata.BiasAccelerometerSigma = epsBias;
IMU_metadata.BiasGyroscopeSigma = epsBias;
IMU_metadata.BiasAccOmegaInit = epsBias;
noiseVel = noiseModel.Isotropic.Sigma(3, 1e-10);
noiseBias = noiseModel.Isotropic.Sigma(6, epsBias);
%% Create ground truth trajectory
trajectoryLength = 100;
unsmooth_DP = 0.5; % controls smoothness on translation norm
unsmooth_DR = 0.1; % controls smoothness on rotation norm
@ -26,11 +46,11 @@ else
sigma_ang = 1e-2;
sigma_cart = 0.1;
end
noiseVector = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart];
noise = noiseModel.Diagonal.Sigmas(noiseVector);
noiseVectorPose = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart];
noisePose = noiseModel.Diagonal.Sigmas(noiseVectorPose);
if useAspnData == 1
% Create a ground truth trajectory using scenario 2 data
%% Create a ground truth trajectory using scenario 2 data
fprintf('\nUsing Scenario 2 ground truth data\n');
% load scenario 2 ground truth data
gtScenario2 = load('truth_scen2.mat', 'Lat', 'Lon', 'Alt', 'Roll', 'Pitch', 'Heading');
@ -41,7 +61,7 @@ if useAspnData == 1
initialRotation = [gtScenario2.Roll(1); gtScenario2.Pitch(1); gtScenario2.Heading(1)];
currentPose = Pose3.Expmap([initialRotation; initialPosition]); % initial pose
gtValues.insert(currentPoseKey, currentPose);
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noise));
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose));
prevPose = currentPose;
% Limit the trajectory length
@ -63,19 +83,31 @@ if useAspnData == 1
gtValues.insert(currentPoseKey, currentPose);
% Add the factor to the factor graph
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noise));
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noisePose));
end
else
% Create a random trajectory as ground truth
%% Create a random trajectory as ground truth
fprintf('\nCreating a random ground truth trajectory\n');
% Add first pose
% Add priors
currentPoseKey = symbol('x', 0);
currentPose = Pose3; % initial pose
gtValues.insert(currentPoseKey, currentPose);
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noise));
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose));
if includeIMUFactors == 1
currentVelKey = symbol('v', 0);
currentBiasKey = symbol('b', 0);
gtValues.insert(currentVelKey, LieVector(vel'));
gtValues.insert(currentBiasKey, zeroBias);
gtGraph.add(PriorFactorLieVector(currentVelKey, LieVector(vel'), noiseVel));
gtGraph.add(PriorFactorConstantBias(currentBiasKey, zeroBias, noiseBias));
end
for i=1:trajectoryLength
currentPoseKey = symbol('x', i);
currentVelKey = symbol('v', i);
currentBiasKey = symbol('b', i);
gtDeltaPosition = unsmooth_DP*randn(3,1) + [20;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5
gtDeltaRotation = unsmooth_DR*randn(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad)
gtDeltaMatrix(i,:) = [gtDeltaRotation; gtDeltaPosition];
@ -87,15 +119,40 @@ else
gtValues.insert(currentPoseKey, currentPose);
% Add the factors to the factor graph
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noise));
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noisePose));
% Add IMU factors
if includeIMUFactors == 1
% create accel and gyro measurements based on
gyro = gtDeltaMatrix(i, 1:3)./deltaT;
accel = (gtDeltaMatrix(i, 4:6) - vel.*deltaT).*(2/(deltaT*deltaT));
vel = gtDeltaMatrix(i,4:6)./deltaT;
imuMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
zeroBias, ...
IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
IMU_metadata.GyroscopeSigma.^2 * eye(3), ...
IMU_metadata.IntegrationSigma.^2 * eye(3));
imuMeasurement.integrateMeasurement(accel', gyro', deltaT);
gtGraph.add(ImuFactor( ...
currentPoseKey-1, currentVelKey-1, ...
currentPoseKey, currentVelKey, ...
currentBiasKey-1, imuMeasurement, g, omegaCoriolis));
gtGraph.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, zeroBias, ...
noiseModel.Isotropic.Sigma(6, epsBias)));
gtGraph.add(PriorFactorConstantBias(currentBiasKey, zeroBias, ...
noiseModel.Isotropic.Sigma(6, epsBias)));
gtValues.insert(currentVelKey, LieVector(vel'));
gtValues.insert(currentBiasKey, zeroBias);
end
end
end
figure(1)
hold on;
plot3DTrajectory(gtValues, '-r', [], 1, Marginals(gtGraph, gtValues));
axis equal
numMonteCarloRuns = 10;
numMonteCarloRuns = 100;
for k=1:numMonteCarloRuns
fprintf('Monte Carlo Run %d.\n', k');
% create a new graph
@ -107,23 +164,23 @@ for k=1:numMonteCarloRuns
initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(1); gtScenario2.Lon(1); gtScenario2.Alt(1)]);
initialRotation = [gtScenario2.Roll(1); gtScenario2.Pitch(1); gtScenario2.Heading(1)];
initialPose = Pose3.Expmap([initialRotation; initialPosition] + (noiseVector .* randn(6,1))); % initial noisy pose
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noise));
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noisePose));
else
currentPoseKey = symbol('x', 0);
noisyDelta = noiseVector .* randn(6,1);
noisyDelta = noiseVectorPose .* randn(6,1);
initialPose = Pose3.Expmap(noisyDelta);
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noise));
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noisePose));
end
for i=1:size(gtDeltaMatrix,1)
currentPoseKey = symbol('x', i);
% for each measurement: add noise and add to graph
noisyDelta = gtDeltaMatrix(i,:)' + (noiseVector .* randn(6,1));
noisyDelta = gtDeltaMatrix(i,:)' + (noiseVectorPose .* randn(6,1));
noisyDeltaPose = Pose3.Expmap(noisyDelta);
% Add the factors to the factor graph
graph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, noisyDeltaPose, noise));
graph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, noisyDeltaPose, noisePose));
end
% optimize