Added IMU factors to ground truth factor graph.
parent
a58d00c0f9
commit
a92b3b2339
|
|
@ -9,10 +9,30 @@ clear all
|
|||
close all
|
||||
|
||||
%% Configuration
|
||||
useAspnData = 1; % controls whether or not to use the ASPN data for scenario 2 as the ground truth traj
|
||||
useAspnData = 0; % controls whether or not to use the ASPN data for scenario 2 as the ground truth traj
|
||||
includeIMUFactors = 1; % if true, IMU type 1 Factors will be generated for the random trajectory
|
||||
includeCameraFactors = 0;
|
||||
trajectoryLength = 50;
|
||||
|
||||
deltaT = 1.0; % amount of time between IMU measurements
|
||||
vel = [0 0 0]; % initial velocity (used for generating IMU measurements
|
||||
g = [0; 0; 0]; % gravity
|
||||
omegaCoriolis = [0; 0; 0]; % Coriolis
|
||||
|
||||
% Imu metadata
|
||||
epsBias = 1e-20;
|
||||
zeroBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1)); % bias is not of interest and is set to zero
|
||||
IMU_metadata.AccelerometerSigma = 1e-5;
|
||||
IMU_metadata.GyroscopeSigma = 1e-7;
|
||||
IMU_metadata.IntegrationSigma = 1e-10;
|
||||
IMU_metadata.BiasAccelerometerSigma = epsBias;
|
||||
IMU_metadata.BiasGyroscopeSigma = epsBias;
|
||||
IMU_metadata.BiasAccOmegaInit = epsBias;
|
||||
|
||||
noiseVel = noiseModel.Isotropic.Sigma(3, 1e-10);
|
||||
noiseBias = noiseModel.Isotropic.Sigma(6, epsBias);
|
||||
|
||||
%% Create ground truth trajectory
|
||||
trajectoryLength = 100;
|
||||
unsmooth_DP = 0.5; % controls smoothness on translation norm
|
||||
unsmooth_DR = 0.1; % controls smoothness on rotation norm
|
||||
|
||||
|
|
@ -26,11 +46,11 @@ else
|
|||
sigma_ang = 1e-2;
|
||||
sigma_cart = 0.1;
|
||||
end
|
||||
noiseVector = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart];
|
||||
noise = noiseModel.Diagonal.Sigmas(noiseVector);
|
||||
noiseVectorPose = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart];
|
||||
noisePose = noiseModel.Diagonal.Sigmas(noiseVectorPose);
|
||||
|
||||
if useAspnData == 1
|
||||
% Create a ground truth trajectory using scenario 2 data
|
||||
%% Create a ground truth trajectory using scenario 2 data
|
||||
fprintf('\nUsing Scenario 2 ground truth data\n');
|
||||
% load scenario 2 ground truth data
|
||||
gtScenario2 = load('truth_scen2.mat', 'Lat', 'Lon', 'Alt', 'Roll', 'Pitch', 'Heading');
|
||||
|
|
@ -41,7 +61,7 @@ if useAspnData == 1
|
|||
initialRotation = [gtScenario2.Roll(1); gtScenario2.Pitch(1); gtScenario2.Heading(1)];
|
||||
currentPose = Pose3.Expmap([initialRotation; initialPosition]); % initial pose
|
||||
gtValues.insert(currentPoseKey, currentPose);
|
||||
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noise));
|
||||
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose));
|
||||
prevPose = currentPose;
|
||||
|
||||
% Limit the trajectory length
|
||||
|
|
@ -63,19 +83,31 @@ if useAspnData == 1
|
|||
gtValues.insert(currentPoseKey, currentPose);
|
||||
|
||||
% Add the factor to the factor graph
|
||||
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noise));
|
||||
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noisePose));
|
||||
end
|
||||
else
|
||||
% Create a random trajectory as ground truth
|
||||
%% Create a random trajectory as ground truth
|
||||
fprintf('\nCreating a random ground truth trajectory\n');
|
||||
% Add first pose
|
||||
% Add priors
|
||||
currentPoseKey = symbol('x', 0);
|
||||
currentPose = Pose3; % initial pose
|
||||
gtValues.insert(currentPoseKey, currentPose);
|
||||
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noise));
|
||||
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose));
|
||||
|
||||
if includeIMUFactors == 1
|
||||
currentVelKey = symbol('v', 0);
|
||||
currentBiasKey = symbol('b', 0);
|
||||
gtValues.insert(currentVelKey, LieVector(vel'));
|
||||
gtValues.insert(currentBiasKey, zeroBias);
|
||||
gtGraph.add(PriorFactorLieVector(currentVelKey, LieVector(vel'), noiseVel));
|
||||
gtGraph.add(PriorFactorConstantBias(currentBiasKey, zeroBias, noiseBias));
|
||||
end
|
||||
|
||||
for i=1:trajectoryLength
|
||||
currentPoseKey = symbol('x', i);
|
||||
currentVelKey = symbol('v', i);
|
||||
currentBiasKey = symbol('b', i);
|
||||
|
||||
gtDeltaPosition = unsmooth_DP*randn(3,1) + [20;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5
|
||||
gtDeltaRotation = unsmooth_DR*randn(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad)
|
||||
gtDeltaMatrix(i,:) = [gtDeltaRotation; gtDeltaPosition];
|
||||
|
|
@ -87,15 +119,40 @@ else
|
|||
gtValues.insert(currentPoseKey, currentPose);
|
||||
|
||||
% Add the factors to the factor graph
|
||||
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noise));
|
||||
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noisePose));
|
||||
|
||||
% Add IMU factors
|
||||
if includeIMUFactors == 1
|
||||
% create accel and gyro measurements based on
|
||||
gyro = gtDeltaMatrix(i, 1:3)./deltaT;
|
||||
accel = (gtDeltaMatrix(i, 4:6) - vel.*deltaT).*(2/(deltaT*deltaT));
|
||||
vel = gtDeltaMatrix(i,4:6)./deltaT;
|
||||
imuMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
|
||||
zeroBias, ...
|
||||
IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
|
||||
IMU_metadata.GyroscopeSigma.^2 * eye(3), ...
|
||||
IMU_metadata.IntegrationSigma.^2 * eye(3));
|
||||
imuMeasurement.integrateMeasurement(accel', gyro', deltaT);
|
||||
gtGraph.add(ImuFactor( ...
|
||||
currentPoseKey-1, currentVelKey-1, ...
|
||||
currentPoseKey, currentVelKey, ...
|
||||
currentBiasKey-1, imuMeasurement, g, omegaCoriolis));
|
||||
gtGraph.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, zeroBias, ...
|
||||
noiseModel.Isotropic.Sigma(6, epsBias)));
|
||||
gtGraph.add(PriorFactorConstantBias(currentBiasKey, zeroBias, ...
|
||||
noiseModel.Isotropic.Sigma(6, epsBias)));
|
||||
gtValues.insert(currentVelKey, LieVector(vel'));
|
||||
gtValues.insert(currentBiasKey, zeroBias);
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
figure(1)
|
||||
hold on;
|
||||
plot3DTrajectory(gtValues, '-r', [], 1, Marginals(gtGraph, gtValues));
|
||||
axis equal
|
||||
|
||||
numMonteCarloRuns = 10;
|
||||
numMonteCarloRuns = 100;
|
||||
for k=1:numMonteCarloRuns
|
||||
fprintf('Monte Carlo Run %d.\n', k');
|
||||
% create a new graph
|
||||
|
|
@ -107,23 +164,23 @@ for k=1:numMonteCarloRuns
|
|||
initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(1); gtScenario2.Lon(1); gtScenario2.Alt(1)]);
|
||||
initialRotation = [gtScenario2.Roll(1); gtScenario2.Pitch(1); gtScenario2.Heading(1)];
|
||||
initialPose = Pose3.Expmap([initialRotation; initialPosition] + (noiseVector .* randn(6,1))); % initial noisy pose
|
||||
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noise));
|
||||
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noisePose));
|
||||
else
|
||||
currentPoseKey = symbol('x', 0);
|
||||
noisyDelta = noiseVector .* randn(6,1);
|
||||
noisyDelta = noiseVectorPose .* randn(6,1);
|
||||
initialPose = Pose3.Expmap(noisyDelta);
|
||||
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noise));
|
||||
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noisePose));
|
||||
end
|
||||
|
||||
for i=1:size(gtDeltaMatrix,1)
|
||||
currentPoseKey = symbol('x', i);
|
||||
|
||||
% for each measurement: add noise and add to graph
|
||||
noisyDelta = gtDeltaMatrix(i,:)' + (noiseVector .* randn(6,1));
|
||||
noisyDelta = gtDeltaMatrix(i,:)' + (noiseVectorPose .* randn(6,1));
|
||||
noisyDeltaPose = Pose3.Expmap(noisyDelta);
|
||||
|
||||
% Add the factors to the factor graph
|
||||
graph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, noisyDeltaPose, noise));
|
||||
graph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, noisyDeltaPose, noisePose));
|
||||
end
|
||||
|
||||
% optimize
|
||||
|
|
|
|||
Loading…
Reference in New Issue