HybridNonlinearFactorGraph tests
parent
43e6bc6462
commit
a9013aad8e
|
@ -841,9 +841,174 @@ TEST(HybridFactorGraph, DefaultDecisionTree) {
|
|||
EXPECT_LONGS_EQUAL(1, remainingFactorGraph->size());
|
||||
}
|
||||
|
||||
namespace test_relinearization {
|
||||
/**
|
||||
* @brief Create a Factor Graph by directly specifying all
|
||||
* the factors instead of creating conditionals first.
|
||||
* This way we can directly provide the likelihoods and
|
||||
* then perform (re-)linearization.
|
||||
*
|
||||
* @param means The means of the GaussianMixtureFactor components.
|
||||
* @param sigmas The covariances of the GaussianMixtureFactor components.
|
||||
* @param m1 The discrete key.
|
||||
* @param x0_measurement A measurement on X0
|
||||
* @return HybridGaussianFactorGraph
|
||||
*/
|
||||
static HybridNonlinearFactorGraph CreateFactorGraph(
|
||||
const std::vector<double> &means, const std::vector<double> &sigmas,
|
||||
DiscreteKey &m1, double x0_measurement) {
|
||||
auto model0 = noiseModel::Isotropic::Sigma(1, sigmas[0]);
|
||||
auto model1 = noiseModel::Isotropic::Sigma(1, sigmas[1]);
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
|
||||
auto f0 =
|
||||
std::make_shared<BetweenFactor<double>>(X(0), X(1), means[0], model0);
|
||||
auto f1 =
|
||||
std::make_shared<BetweenFactor<double>>(X(0), X(1), means[1], model1);
|
||||
|
||||
// Create HybridNonlinearFactor
|
||||
std::vector<std::pair<NonlinearFactor::shared_ptr, double>> factors{
|
||||
{f0, ComputeLogNormalizer(model0)}, {f1, ComputeLogNormalizer(model1)}};
|
||||
|
||||
HybridNonlinearFactor mixtureFactor({X(0), X(1)}, {m1}, factors);
|
||||
|
||||
HybridNonlinearFactorGraph hfg;
|
||||
hfg.push_back(mixtureFactor);
|
||||
|
||||
hfg.push_back(PriorFactor<double>(X(0), x0_measurement, prior_noise));
|
||||
|
||||
return hfg;
|
||||
}
|
||||
} // namespace test_relinearization
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Test components with differing means but the same covariances.
|
||||
* The factor graph is
|
||||
* *-X1-*-X2
|
||||
* |
|
||||
* M1
|
||||
*/
|
||||
TEST(HybridNonlinearFactorGraph, DifferentMeans) {
|
||||
using namespace test_relinearization;
|
||||
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
Values values;
|
||||
double x0 = 0.0, x1 = 1.75;
|
||||
values.insert(X(0), x0);
|
||||
values.insert(X(1), x1);
|
||||
|
||||
std::vector<double> means = {0.0, 2.0}, sigmas = {1e-0, 1e-0};
|
||||
|
||||
HybridNonlinearFactorGraph hfg = CreateFactorGraph(means, sigmas, m1, x0);
|
||||
|
||||
{
|
||||
auto bn = hfg.linearize(values)->eliminateSequential();
|
||||
HybridValues actual = bn->optimize();
|
||||
|
||||
HybridValues expected(
|
||||
VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(-1.75)}},
|
||||
DiscreteValues{{M(1), 0}});
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
DiscreteValues dv0{{M(1), 0}};
|
||||
VectorValues cont0 = bn->optimize(dv0);
|
||||
double error0 = bn->error(HybridValues(cont0, dv0));
|
||||
|
||||
// TODO(Varun) Perform importance sampling to estimate error?
|
||||
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.69314718056, error0, 1e-9);
|
||||
|
||||
DiscreteValues dv1{{M(1), 1}};
|
||||
VectorValues cont1 = bn->optimize(dv1);
|
||||
double error1 = bn->error(HybridValues(cont1, dv1));
|
||||
EXPECT_DOUBLES_EQUAL(error0, error1, 1e-9);
|
||||
}
|
||||
|
||||
{
|
||||
// Add measurement on x1
|
||||
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
|
||||
hfg.push_back(PriorFactor<double>(X(1), means[1], prior_noise));
|
||||
|
||||
auto bn = hfg.linearize(values)->eliminateSequential();
|
||||
HybridValues actual = bn->optimize();
|
||||
|
||||
HybridValues expected(
|
||||
VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(0.25)}},
|
||||
DiscreteValues{{M(1), 1}});
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
{
|
||||
DiscreteValues dv{{M(1), 0}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(2.12692448787, error, 1e-9);
|
||||
}
|
||||
{
|
||||
DiscreteValues dv{{M(1), 1}};
|
||||
VectorValues cont = bn->optimize(dv);
|
||||
double error = bn->error(HybridValues(cont, dv));
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(0.126928487854, error, 1e-9);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/**
|
||||
* @brief Test components with differing covariances but the same means.
|
||||
* The factor graph is
|
||||
* *-X1-*-X2
|
||||
* |
|
||||
* M1
|
||||
*/
|
||||
TEST_DISABLED(HybridNonlinearFactorGraph, DifferentCovariances) {
|
||||
using namespace test_relinearization;
|
||||
|
||||
DiscreteKey m1(M(1), 2);
|
||||
|
||||
Values values;
|
||||
double x0 = 1.0, x1 = 1.0;
|
||||
values.insert(X(0), x0);
|
||||
values.insert(X(1), x1);
|
||||
|
||||
std::vector<double> means = {0.0, 0.0}, sigmas = {1e2, 1e-2};
|
||||
|
||||
// Create FG with HybridNonlinearFactor and prior on X1
|
||||
HybridNonlinearFactorGraph hfg = CreateFactorGraph(means, sigmas, m1, x0);
|
||||
// Linearize and eliminate
|
||||
auto hbn = hfg.linearize(values)->eliminateSequential();
|
||||
|
||||
VectorValues cv;
|
||||
cv.insert(X(0), Vector1(0.0));
|
||||
cv.insert(X(1), Vector1(0.0));
|
||||
|
||||
// Check that the error values at the MLE point μ.
|
||||
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
|
||||
|
||||
DiscreteValues dv0{{M(1), 0}};
|
||||
DiscreteValues dv1{{M(1), 1}};
|
||||
|
||||
// regression
|
||||
EXPECT_DOUBLES_EQUAL(9.90348755254, errorTree(dv0), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
|
||||
|
||||
DiscreteConditional expected_m1(m1, "0.5/0.5");
|
||||
DiscreteConditional actual_m1 = *(hbn->at(2)->asDiscrete());
|
||||
|
||||
EXPECT(assert_equal(expected_m1, actual_m1));
|
||||
}
|
||||
|
||||
/* *************************************************************************
|
||||
*/
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
/* *************************************************************************
|
||||
*/
|
||||
|
|
Loading…
Reference in New Issue