remove noise sampler in visualSLAM examples
							parent
							
								
									8037c44b17
								
							
						
					
					
						commit
						a8ffa407ae
					
				| 
						 | 
				
			
			@ -53,10 +53,8 @@ int main(int argc, char* argv[]) {
 | 
			
		|||
  	// First pose with prior factor
 | 
			
		||||
  	newFactors.addPosePrior(X(0), data.poses[0], data.noiseX);
 | 
			
		||||
 | 
			
		||||
  	// Second pose with odometry measurement, simulated by adding Gaussian noise to the ground-truth.
 | 
			
		||||
  	Pose3 odoMeasurement =  data.odometry*Pose3::Expmap(data.noiseX->sample());
 | 
			
		||||
  	newFactors.push_back( boost::shared_ptr<BetweenFactor<Pose3> >(
 | 
			
		||||
  	  			new BetweenFactor<Pose3>(X(0), X(1), odoMeasurement, data.noiseX)));
 | 
			
		||||
  	// Second pose with odometry measurement
 | 
			
		||||
  	newFactors.addOdometry(X(0), X(1), data.odometry, data.noiseX);
 | 
			
		||||
 | 
			
		||||
  	// Visual measurements at both poses
 | 
			
		||||
  	for (size_t i=0; i<2; ++i) {
 | 
			
		||||
| 
						 | 
				
			
			@ -67,13 +65,12 @@ int main(int argc, char* argv[]) {
 | 
			
		|||
 | 
			
		||||
  	// Initial values for the first two poses, simulated with Gaussian noise
 | 
			
		||||
  	Values initials;
 | 
			
		||||
  	Pose3 pose0Init = data.poses[0]*Pose3::Expmap(data.noiseX->sample());
 | 
			
		||||
  	initials.insert(X(0), pose0Init);
 | 
			
		||||
  	initials.insert(X(1), pose0Init*odoMeasurement);
 | 
			
		||||
  	initials.insert(X(0), data.poses[0]);
 | 
			
		||||
  	initials.insert(X(1), data.poses[0]*data.odometry);
 | 
			
		||||
 | 
			
		||||
  	// Initial values for the landmarks, simulated with Gaussian noise
 | 
			
		||||
  	// Initial values for the landmarks
 | 
			
		||||
  	for (size_t j=0; j<data.points.size(); ++j)
 | 
			
		||||
  		initials.insert(L(j), data.points[j] + Point3(data.noiseL->sample()));
 | 
			
		||||
  		initials.insert(L(j), data.points[j]);
 | 
			
		||||
 | 
			
		||||
  	// Update ISAM the first time and obtain the current estimate
 | 
			
		||||
  	isam.update(newFactors, initials);
 | 
			
		||||
| 
						 | 
				
			
			@ -87,9 +84,8 @@ int main(int argc, char* argv[]) {
 | 
			
		|||
  for (size_t i=2; i<data.poses.size(); ++i) {
 | 
			
		||||
  	visualSLAM::Graph newFactors;
 | 
			
		||||
  	// Factor for odometry measurements, simulated by adding Gaussian noise to the ground-truth.
 | 
			
		||||
  	Pose3 odoMeasurement =  data.odometry*Pose3::Expmap(data.noiseX->sample());
 | 
			
		||||
  	newFactors.push_back( boost::shared_ptr<BetweenFactor<Pose3> >(
 | 
			
		||||
  			new BetweenFactor<Pose3>(X(i-1), X(i), odoMeasurement, data.noiseX)));
 | 
			
		||||
  	Pose3 odoMeasurement =  data.odometry;
 | 
			
		||||
  	newFactors.addOdometry(X(i-1), X(i), data.odometry, data.noiseX);
 | 
			
		||||
  	// Factors for visual measurements
 | 
			
		||||
  	for (size_t j=0; j<data.z[i].size(); ++j) {
 | 
			
		||||
  		newFactors.addMeasurement(data.z[i][j], data.noiseZ, X(i), L(j), data.sK);
 | 
			
		||||
| 
						 | 
				
			
			@ -97,7 +93,7 @@ int main(int argc, char* argv[]) {
 | 
			
		|||
 | 
			
		||||
    // Initial estimates for the new node Xi, simulated by Gaussian noises
 | 
			
		||||
  	Values initials;
 | 
			
		||||
  	initials.insert(X(i), currentEstimate.at<Pose3>(X(i-1))*odoMeasurement);
 | 
			
		||||
  	initials.insert(X(i), currentEstimate.at<Pose3>(X(i-1))*data.odometry);
 | 
			
		||||
 | 
			
		||||
  	// update ISAM
 | 
			
		||||
  	isam.update(newFactors, initials);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -66,20 +66,19 @@ struct VisualSLAMExampleData {
 | 
			
		|||
		double theta = 0.0;
 | 
			
		||||
		double r = 30.0;
 | 
			
		||||
		for (int i=0; i<n; ++i, theta += 2*M_PI/n) {
 | 
			
		||||
			data.poses.push_back(gtsam::Pose3(
 | 
			
		||||
					gtsam::Rot3(-sin(theta), 0.0, -cos(theta),
 | 
			
		||||
											cos(theta), 0.0, -sin(theta),
 | 
			
		||||
											0.0, -1.0, 0.0),
 | 
			
		||||
					gtsam::Point3(r*cos(theta), r*sin(theta), 0.0)));
 | 
			
		||||
			Point3 C = gtsam::Point3(r*cos(theta), r*sin(theta), 0.0);
 | 
			
		||||
			SimpleCamera camera = SimpleCamera::lookat(C, Point3(), Point3(0,0,1));
 | 
			
		||||
			data.poses.push_back(camera.pose());
 | 
			
		||||
		}
 | 
			
		||||
		data.odometry = data.poses[0].between(data.poses[1]);
 | 
			
		||||
 | 
			
		||||
		// Simulated measurements with Gaussian noise
 | 
			
		||||
		// Simulated measurements, possibly with Gaussian noise
 | 
			
		||||
		data.noiseZ = gtsam::sharedSigma(2, 1.0);
 | 
			
		||||
		for (size_t i=0; i<data.poses.size(); ++i) {
 | 
			
		||||
			for (size_t j=0; j<data.points.size(); ++j) {
 | 
			
		||||
				gtsam::SimpleCamera camera(data.poses[i], *data.sK);
 | 
			
		||||
				data.z[i].push_back(camera.project(data.points[j]) + gtsam::Point2(data.noiseZ->sample()));
 | 
			
		||||
				data.z[i].push_back(camera.project(data.points[j])
 | 
			
		||||
						/*+ gtsam::Point2(data.noiseZ->sample()))*/); // you can add noise as desired
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
		data.noiseX = gtsam::sharedSigmas(gtsam::Vector_(6, 0.001, 0.001, 0.001, 0.1, 0.1, 0.1));
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -49,9 +49,9 @@ int main(int argc, char* argv[]) {
 | 
			
		|||
  /* 3. Initial estimates for variable nodes, simulated by Gaussian noises */
 | 
			
		||||
  Values initial;
 | 
			
		||||
  for (size_t i=0; i<data.poses.size(); ++i)
 | 
			
		||||
  	initial.insert(X(i), data.poses[i]*Pose3::Expmap(data.noiseX->sample()));
 | 
			
		||||
  	initial.insert(X(i), data.poses[i]/* *Pose3::Expmap(data.noiseX->sample())*/); // you can add noise if you want
 | 
			
		||||
  for (size_t j=0; j<data.points.size(); ++j)
 | 
			
		||||
  	initial.insert(L(j), data.points[j] + Point3(data.noiseL->sample()));
 | 
			
		||||
  	initial.insert(L(j), data.points[j] /*+ Point3(data.noiseL->sample())*/); // you can add noise if you want
 | 
			
		||||
  initial.print("Intial Estimates: ");
 | 
			
		||||
 | 
			
		||||
  /* 4. Optimize the graph and print results */
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue