update ComputeLeafOrdering to give a correct vector of values
parent
b91c470b69
commit
a8e24efdec
|
|
@ -64,27 +64,69 @@ TableFactor::TableFactor(const DiscreteKeys& dkeys,
|
|||
/**
|
||||
* @brief Compute the correct ordering of the leaves in the decision tree.
|
||||
*
|
||||
* This is done by first taking all the values which have modulo 0 value with
|
||||
* the cardinality of the innermost key `n`, and we go up to modulo n.
|
||||
*
|
||||
* @param dt The DecisionTree
|
||||
* @return std::vector<double>
|
||||
* @return Eigen::SparseVector<double>
|
||||
*/
|
||||
std::vector<double> ComputeLeafOrdering(const DiscreteKeys& dkeys,
|
||||
const DecisionTreeFactor& dt) {
|
||||
std::vector<double> probs = dt.probabilities();
|
||||
std::vector<double> ordered;
|
||||
static Eigen::SparseVector<double> ComputeLeafOrdering(
|
||||
const DiscreteKeys& dkeys, const DecisionTreeFactor& dt) {
|
||||
// SparseVector needs to know the maximum possible index,
|
||||
// so we compute the product of cardinalities.
|
||||
size_t prod_cardinality = 1;
|
||||
for (auto&& [_, c] : dt.cardinalities()) {
|
||||
prod_cardinality *= c;
|
||||
}
|
||||
Eigen::SparseVector<double> sparse_table(prod_cardinality);
|
||||
size_t nrValues = 0;
|
||||
dt.visit([&nrValues](double x) {
|
||||
if (x > 0) nrValues += 1;
|
||||
});
|
||||
sparse_table.reserve(nrValues);
|
||||
|
||||
size_t n = dkeys[0].second;
|
||||
std::set<Key> allKeys(dt.keys().begin(), dt.keys().end());
|
||||
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
for (size_t idx = 0; idx < probs.size(); ++idx) {
|
||||
if (idx % n == k) {
|
||||
ordered.push_back(probs[idx]);
|
||||
auto op = [&](const Assignment<Key>& assignment, double p) {
|
||||
if (p > 0) {
|
||||
// Get all the keys involved in this assignment
|
||||
std::set<Key> assignment_keys;
|
||||
for (auto&& [k, _] : assignment) {
|
||||
assignment_keys.insert(k);
|
||||
}
|
||||
|
||||
// Find the keys missing in the assignment
|
||||
std::vector<Key> diff;
|
||||
std::set_difference(allKeys.begin(), allKeys.end(),
|
||||
assignment_keys.begin(), assignment_keys.end(),
|
||||
std::back_inserter(diff));
|
||||
|
||||
// Generate all assignments using the missing keys
|
||||
DiscreteKeys extras;
|
||||
for (auto&& key : diff) {
|
||||
extras.push_back({key, dt.cardinality(key)});
|
||||
}
|
||||
auto&& extra_assignments = DiscreteValues::CartesianProduct(extras);
|
||||
|
||||
for (auto&& extra : extra_assignments) {
|
||||
// Create new assignment using the extra assignment
|
||||
DiscreteValues updated_assignment(assignment);
|
||||
updated_assignment.insert(extra);
|
||||
|
||||
// Generate index and add to the sparse vector.
|
||||
Eigen::Index idx = 0;
|
||||
size_t prev_cardinality = 1;
|
||||
// We go in reverse since a DecisionTree has the highest label first
|
||||
for (auto&& it = updated_assignment.rbegin();
|
||||
it != updated_assignment.rend(); it++) {
|
||||
idx += prev_cardinality * it->second;
|
||||
prev_cardinality *= dt.cardinality(it->first);
|
||||
}
|
||||
sparse_table.coeffRef(idx) = p;
|
||||
}
|
||||
}
|
||||
}
|
||||
return ordered;
|
||||
};
|
||||
|
||||
dt.visitWith(op);
|
||||
|
||||
return sparse_table;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
|
|
|
|||
Loading…
Reference in New Issue