Small change necessitating lots of edits: Conditionals now include key of random variable

This simplifies Bayes nets quite a bit. Also created a Conditional base class, derived classes ConditionalGaussian and SymbolicConditional
Finally, some changes were needed because I moved some headers to .cpp
release/4.3a0
Frank Dellaert 2009-11-02 03:50:30 +00:00
parent 943b692a6b
commit a8d267c4ca
33 changed files with 566 additions and 485 deletions

View File

@ -300,7 +300,6 @@
<buildTargets>
<target name="install" path="wrap" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>install</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -308,7 +307,6 @@
</target>
<target name="check" path="wrap" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>check</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -316,6 +314,7 @@
</target>
<target name="check" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>check</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -323,7 +322,6 @@
</target>
<target name="testSimpleCamera.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSimpleCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -339,6 +337,7 @@
</target>
<target name="testVSLAMFactor.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testVSLAMFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -346,7 +345,6 @@
</target>
<target name="testCalibratedCamera.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testCalibratedCamera.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -354,6 +352,7 @@
</target>
<target name="testConditionalGaussian.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testConditionalGaussian.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -361,7 +360,6 @@
</target>
<target name="testPose2.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testPose2.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -377,7 +375,6 @@
</target>
<target name="testRot3.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testRot3.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -385,6 +382,7 @@
</target>
<target name="testNonlinearOptimizer.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testNonlinearOptimizer.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -392,7 +390,6 @@
</target>
<target name="testLinearFactor.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testLinearFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -400,7 +397,6 @@
</target>
<target name="testConstrainedNonlinearFactorGraph.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testConstrainedNonlinearFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -408,7 +404,6 @@
</target>
<target name="testLinearFactorGraph.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testLinearFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -416,6 +411,7 @@
</target>
<target name="testNonlinearFactorGraph.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testNonlinearFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -423,7 +419,6 @@
</target>
<target name="testPose3.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testPose3.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -431,6 +426,7 @@
</target>
<target name="testConstrainedLinearFactorGraph.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testConstrainedLinearFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -438,6 +434,7 @@
</target>
<target name="testVectorConfig.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testVectorConfig.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -445,6 +442,7 @@
</target>
<target name="testPoint2.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testPoint2.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -452,7 +450,6 @@
</target>
<target name="testNonlinearFactor.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testNonlinearFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -460,7 +457,6 @@
</target>
<target name="timeLinearFactor.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>timeLinearFactor.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -468,22 +464,21 @@
</target>
<target name="timeLinearFactorGraph.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>timeLinearFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testChordalBayesNet.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<target name="testGaussianBayesNet.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testChordalBayesNet.run</buildTarget>
<buildTarget>testGaussianBayesNet.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
<runAllBuilders>true</runAllBuilders>
</target>
<target name="testBayesTree.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testBayesTree.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -491,6 +486,7 @@
</target>
<target name="testSymbolicBayesChain.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSymbolicBayesChain.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -498,6 +494,7 @@
</target>
<target name="testSymbolicFactorGraph.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testSymbolicFactorGraph.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>false</useDefaultCommand>
@ -505,7 +502,6 @@
</target>
<target name="testVector.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testVector.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -513,7 +509,6 @@
</target>
<target name="testMatrix.run" path="cpp" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>testMatrix.run</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -521,6 +516,7 @@
</target>
<target name="install" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>install</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -528,6 +524,7 @@
</target>
<target name="clean" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>clean</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>
@ -535,6 +532,7 @@
</target>
<target name="check" path="" targetID="org.eclipse.cdt.build.MakeTargetBuilder">
<buildCommand>make</buildCommand>
<buildArguments/>
<buildTarget>check</buildTarget>
<stopOnError>true</stopOnError>
<useDefaultCommand>true</useDefaultCommand>

View File

@ -8,49 +8,42 @@
#include <boost/foreach.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/assign/std/vector.hpp> // for +=
using namespace boost::assign;
#include "Ordering.h"
#include "BayesNet.h"
using namespace std;
// trick from some reading group
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
namespace gtsam {
/* ************************************************************************* */
template<class Conditional>
void BayesNet<Conditional>::print(const string& s) const {
cout << s << ":\n";
BOOST_FOREACH(string key, keys_) {
const_iterator it = nodes_.find(key);
it->second->print("Node[" + key + "]");
}
std::string key;
BOOST_FOREACH(conditional_ptr conditional,conditionals_)
conditional->print("Node[" + conditional->key() + "]");
}
/* ************************************************************************* */
template<class Conditional>
bool BayesNet<Conditional>::equals(const BayesNet& cbn, double tol) const {
if(indices_ != cbn.indices_) return false;
if(size() != cbn.size()) return false;
if(keys_ != cbn.keys_) return false;
string key;
boost::shared_ptr<Conditional> node;
FOREACH_PAIR( key, node, nodes_) {
const_iterator cg = cbn.nodes_.find(key);
if (cg == nodes_.end()) return false;
if (!equals_star(node,cg->second,tol)) return false;
}
return true;
return equal(conditionals_.begin(),conditionals_.begin(),conditionals_.begin(),equals_star<Conditional>);
}
/* ************************************************************************* */
template<class Conditional>
void BayesNet<Conditional>::insert
(const string& key, boost::shared_ptr<Conditional> node) {
keys_.push_front(key);
nodes_.insert(make_pair(key,node));
(const boost::shared_ptr<Conditional>& conditional) {
indices_.insert(make_pair(conditional->key(),conditionals_.size()));
conditionals_.push_back(conditional);
}
/* ************************************************************************* */
/* ************************************************************************* *
template<class Conditional>
void BayesNet<Conditional>::erase(const string& key) {
list<string>::iterator it;
@ -59,9 +52,18 @@ namespace gtsam {
break;
}
keys_.erase(it);
nodes_.erase(key);
conditionals_.erase(key);
}
/* ************************************************************************* */
/* ************************************************************************* */
template<class Conditional>
Ordering BayesNet<Conditional>::ordering() const {
Ordering ord;
BOOST_FOREACH(conditional_ptr conditional,conditionals_)
ord.push_back(conditional->key());
return ord;
}
/* ************************************************************************* */
} // namespace gtsam

View File

@ -8,14 +8,18 @@
#pragma once
#include <vector>
#include <boost/shared_ptr.hpp>
#include <boost/serialization/map.hpp>
#include <boost/serialization/list.hpp>
#include <boost/serialization/vector.hpp>
#include <boost/serialization/shared_ptr.hpp>
#include "Testable.h"
namespace gtsam {
class Ordering;
/**
* Bayes network
* This is the base class for SymbolicBayesNet, DiscreteBayesNet, and GaussianBayesNet
@ -24,14 +28,36 @@ namespace gtsam {
*/
template<class Conditional>
class BayesNet: public Testable<BayesNet<Conditional> > {
public:
/** We store shared pointers to Conditional densities */
typedef typename boost::shared_ptr<Conditional> conditional_ptr;
typedef typename std::vector<conditional_ptr> Conditionals;
typedef typename Conditionals::const_iterator const_iterator;
typedef typename Conditionals::const_reverse_iterator const_reverse_iterator;
protected:
/** nodes keys stored in topological sort order, i.e. from parents to children */
std::list<std::string> keys_;
/**
* Conditional densities are stored in reverse topological sort order (i.e., leaves first,
* parents last), which corresponds to the elimination ordering if so obtained,
* and is consistent with the column (block) ordering of an upper triangular matrix.
*/
Conditionals conditionals_;
/** nodes stored on key */
typedef typename std::map<std::string, boost::shared_ptr<Conditional> > Nodes;
Nodes nodes_;
/**
* O(log n) random access on keys will provided by a map from keys to vector index.
*/
typedef std::map<std::string, int> Indices;
Indices indices_;
/** O(log n) lookup from key to node index */
inline int index(const std::string& key) const {
Indices::const_iterator it = indices_.find(key); // get node index
assert( it != indices_.end() );
return it->second;
}
public:
@ -41,37 +67,36 @@ namespace gtsam {
/** check equality */
bool equals(const BayesNet& other, double tol = 1e-9) const;
/** insert: use reverse topological sort (i.e. parents last) */
void insert(const std::string& key, boost::shared_ptr<Conditional> node);
/** delete */
void erase(const std::string& key);
/** insert: use reverse topological sort (i.e. parents last / elimination order) */
void insert(const boost::shared_ptr<Conditional>& conditional);
/** size is the number of nodes */
inline size_t size() const {return nodes_.size();}
/** return keys in topological sort order (parents first), i.e., reverse elimination order */
inline std::list<std::string> keys() const { return keys_;}
inline boost::shared_ptr<Conditional> operator[](const std::string& key) const {
const_iterator cg = nodes_.find(key); // get node
assert( cg != nodes_.end() );
return cg->second;
inline size_t size() const {
return conditionals_.size();
}
/** return begin and end of the nodes. FD: breaks encapsulation? */
typedef typename Nodes::const_iterator const_iterator;
const_iterator const begin() const {return nodes_.begin();}
const_iterator const end() const {return nodes_.end();}
/** return keys in reverse topological sort order, i.e., elimination order */
Ordering ordering() const;
/** O(log n) random access to Conditional by key */
inline conditional_ptr operator[](const std::string& key) const {
int i = index(key);
return conditionals_[i];
}
/** return iterators. FD: breaks encapsulation? */
const_iterator const begin() const {return conditionals_.begin();}
const_iterator const end() const {return conditionals_.end();}
const_reverse_iterator const rbegin() const {return conditionals_.rbegin();}
const_reverse_iterator const rend() const {return conditionals_.rend();}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version)
{
ar & BOOST_SERIALIZATION_NVP(keys_);
ar & BOOST_SERIALIZATION_NVP(nodes_);
void serialize(Archive & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(conditionals_);
ar & BOOST_SERIALIZATION_NVP(indices_);
}
};

View File

@ -13,8 +13,8 @@ namespace gtsam {
/* ************************************************************************* */
template<class Conditional>
Front<Conditional>::Front(string key, cond_ptr conditional) {
add(key, conditional);
Front<Conditional>::Front(const conditional_ptr& conditional) {
add(conditional);
separator_ = conditional->parents();
}
@ -22,11 +22,12 @@ namespace gtsam {
template<class Conditional>
void Front<Conditional>::print(const string& s) const {
cout << s;
BOOST_FOREACH(string key, keys_) cout << " " << key;
BOOST_FOREACH(const conditional_ptr& conditional, conditionals_)
cout << " " << conditional->key();
if (!separator_.empty()) {
cout << " :";
BOOST_FOREACH(string key, separator_)
cout << " " << key;
cout << " " << key;
}
cout << endl;
}
@ -34,14 +35,12 @@ namespace gtsam {
/* ************************************************************************* */
template<class Conditional>
bool Front<Conditional>::equals(const Front<Conditional>& other, double tol) const {
return (keys_ == other.keys_) &&
equal(conditionals_.begin(),conditionals_.end(),other.conditionals_.begin(),equals_star<Conditional>);
return equal(conditionals_.begin(),conditionals_.end(),other.conditionals_.begin(),equals_star<Conditional>);
}
/* ************************************************************************* */
template<class Conditional>
void Front<Conditional>::add(string key, cond_ptr conditional) {
keys_.push_front(key);
void Front<Conditional>::add(const conditional_ptr& conditional) {
conditionals_.push_front(conditional);
}
@ -51,12 +50,13 @@ namespace gtsam {
}
/* ************************************************************************* */
// TODO: traversal is O(n*log(n)) but could be O(n) with better bayesChain
// TODO: traversal is O(n*log(n)) but could be O(n) with better bayesNet
template<class Conditional>
BayesTree<Conditional>::BayesTree(BayesNet<Conditional>& bayesChain, bool verbose) {
list<string> reverseOrdering = bayesChain.keys();
BOOST_FOREACH(string key, reverseOrdering)
insert(key,bayesChain[key],verbose);
BayesTree<Conditional>::BayesTree(const BayesNet<Conditional>& bayesNet, bool verbose) {
typename BayesNet<Conditional>::const_reverse_iterator rit;
for ( rit=bayesNet.rbegin(); rit < bayesNet.rend(); ++rit ) {
insert(*rit,verbose);
}
}
/* ************************************************************************* */
@ -78,8 +78,9 @@ namespace gtsam {
/* ************************************************************************* */
template<class Conditional>
void BayesTree<Conditional>::insert(string key, conditional_ptr conditional, bool verbose) {
void BayesTree<Conditional>::insert(const boost::shared_ptr<Conditional>& conditional, bool verbose) {
string key = conditional->key();
if (verbose) cout << "Inserting " << key << "| ";
// get parents
@ -90,7 +91,7 @@ namespace gtsam {
// if no parents, start a new root clique
if (parents.empty()) {
if (verbose) cout << "Creating root clique" << endl;
node_ptr root(new Node(key, conditional));
node_ptr root(new Node(conditional));
nodes_.push_back(root);
nodeMap_.insert(make_pair(key, 0));
return;
@ -108,13 +109,13 @@ namespace gtsam {
if (parent_clique->size() == parents.size()) {
if (verbose) cout << "Adding to clique " << index << endl;
nodeMap_.insert(make_pair(key, index));
parent_clique->add(key, conditional);
parent_clique->add(conditional);
return;
}
// otherwise, start a new clique and add it to the tree
if (verbose) cout << "Starting new clique" << endl;
node_ptr new_clique(new Node(key, conditional));
node_ptr new_clique(new Node(conditional));
new_clique->parent_ = parent_clique;
parent_clique->children_.push_back(new_clique);
nodeMap_.insert(make_pair(key, nodes_.size()));
@ -123,4 +124,5 @@ namespace gtsam {
/* ************************************************************************* */
} /// namespace gtsam
}
/// namespace gtsam

View File

@ -22,14 +22,13 @@ namespace gtsam {
template<class Conditional>
class Front: Testable<Front<Conditional> > {
private:
typedef boost::shared_ptr<Conditional> cond_ptr;
std::list<std::string> keys_; /** frontal keys */
std::list<cond_ptr> conditionals_; /** conditionals */
typedef boost::shared_ptr<Conditional> conditional_ptr;
std::list<conditional_ptr> conditionals_; /** conditionals */
std::list<std::string> separator_; /** separator keys */
public:
/** constructor */
Front(std::string key, cond_ptr conditional);
Front(const conditional_ptr& conditional);
/** print */
void print(const std::string& s = "") const;
@ -38,10 +37,10 @@ namespace gtsam {
bool equals(const Front<Conditional>& other, double tol = 1e-9) const;
/** add a frontal node */
void add(std::string key, cond_ptr conditional);
void add(const conditional_ptr& conditional);
/** return size of the clique */
inline size_t size() const {return keys_.size() + separator_.size();}
inline size_t size() const {return conditionals_.size() + separator_.size();}
};
/**
@ -55,6 +54,7 @@ namespace gtsam {
public:
typedef boost::shared_ptr<Conditional> conditional_ptr;
typedef std::pair<std::string,conditional_ptr> NamedConditional;
private:
@ -64,7 +64,7 @@ namespace gtsam {
shared_ptr parent_;
std::list<shared_ptr> children_;
Node(std::string key, conditional_ptr conditional):Front<Conditional>(key,conditional) {}
Node(const boost::shared_ptr<Conditional>& conditional):Front<Conditional>(conditional) {}
/** print this node and entire subtree below it*/
void printTree(const std::string& indent) const {
@ -88,8 +88,8 @@ namespace gtsam {
/** Create an empty Bayes Tree */
BayesTree();
/** Create a Bayes Tree from a SymbolicBayesNet */
BayesTree(BayesNet<Conditional>& bayesChain, bool verbose=false);
/** Create a Bayes Tree from a Bayes Net */
BayesTree(const BayesNet<Conditional>& bayesNet, bool verbose=false);
/** Destructor */
virtual ~BayesTree() {}
@ -101,9 +101,9 @@ namespace gtsam {
bool equals(const BayesTree<Conditional>& other, double tol = 1e-9) const;
/** insert a new conditional */
void insert(std::string key, conditional_ptr conditional, bool verbose=false);
void insert(const boost::shared_ptr<Conditional>& conditional, bool verbose=false);
/** number of cliques */
/** number of cliques */
inline size_t size() const { return nodes_.size();}
/** return root clique */

52
cpp/Conditional.h Normal file
View File

@ -0,0 +1,52 @@
/**
* @file Conditional.h
* @brief Base class for conditional densities
* @author Frank Dellaert
*/
// \callgraph
#pragma once
#include <boost/utility.hpp> // for noncopyable
#include "Testable.h"
namespace gtsam {
/**
* Base class for conditional densities
*
* We make it noncopyable so we enforce the fact that factors are
* kept in pointer containers. To be safe, you should make them
* immutable, i.e., practicing functional programming.
*/
class Conditional : boost::noncopyable, public Testable<Conditional>
{
protected:
/** key of random variable */
std::string key_;
public:
/** constructor */
Conditional(const std::string& key):key_(key) {}
/* destructor */
virtual ~Conditional() {};
/** check equality */
bool equals(const Conditional& c, double tol = 1e-9) const {
return key_ == c.key_;
}
/** return key */
inline const std::string& key() const { return key_;}
/** return parent keys */
virtual std::list<std::string> parents() const = 0;
/** return the number of parents */
virtual std::size_t nrParents() const = 0;
};
}

View File

@ -4,49 +4,39 @@
* @author Christian Potthast
*/
#include <string.h>
#include <boost/numeric/ublas/vector.hpp>
#include "Ordering.h"
#include "ConditionalGaussian.h"
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
ConditionalGaussian::ConditionalGaussian(Vector d,Matrix R) : R_(R),d_(d)
{
ConditionalGaussian::ConditionalGaussian(const string& key, Vector d, Matrix R) :
Conditional (key), R_(R), d_(d) {
}
/* ************************************************************************* */
ConditionalGaussian::ConditionalGaussian(Vector d,
Matrix R,
const string& name1,
Matrix S)
: R_(R),d_(d)
{
parents_.insert(make_pair(name1, S));
ConditionalGaussian::ConditionalGaussian(const string& key, Vector d, Matrix R,
const string& name1, Matrix S) :
Conditional (key), R_(R), d_(d) {
parents_.insert(make_pair(name1, S));
}
/* ************************************************************************* */
ConditionalGaussian::ConditionalGaussian(Vector d,
Matrix R,
const string& name1,
Matrix S,
const string& name2,
Matrix T)
: R_(R),d_(d)
{
parents_.insert(make_pair(name1, S));
parents_.insert(make_pair(name2, T));
ConditionalGaussian::ConditionalGaussian(const string& key, Vector d, Matrix R,
const string& name1, Matrix S, const string& name2, Matrix T) :
Conditional (key), R_(R), d_(d) {
parents_.insert(make_pair(name1, S));
parents_.insert(make_pair(name2, T));
}
/* ************************************************************************* */
ConditionalGaussian::ConditionalGaussian(const Vector& d,
const Matrix& R,
const map<string, Matrix>& parents)
: R_(R), d_(d), parents_(parents)
{
}
ConditionalGaussian::ConditionalGaussian(const string& key,
const Vector& d, const Matrix& R, const map<string, Matrix>& parents) :
Conditional (key), R_(R), d_(d), parents_(parents) {
}
/* ************************************************************************* */
void ConditionalGaussian::print(const string &s) const
@ -62,23 +52,26 @@ void ConditionalGaussian::print(const string &s) const
}
/* ************************************************************************* */
bool ConditionalGaussian::equals(const ConditionalGaussian &cg, double tol) const {
bool ConditionalGaussian::equals(const Conditional &c, double tol) const {
if (!Conditional::equals(c)) return false;
const ConditionalGaussian* p = dynamic_cast<const ConditionalGaussian*> (&c);
if (p == NULL) return false;
Parents::const_iterator it = parents_.begin();
// check if the size of the parents_ map is the same
if (parents_.size() != cg.parents_.size()) return false;
if (parents_.size() != p->parents_.size()) return false;
// check if R_ is equal
if (!(equal_with_abs_tol(R_, cg.R_, tol))) return false;
if (!(equal_with_abs_tol(R_, p->R_, tol))) return false;
// check if d_ is equal
if (!(::equal_with_abs_tol(d_, cg.d_, tol))) return false;
if (!(::equal_with_abs_tol(d_, p->d_, tol))) return false;
// check if the matrices are the same
// iterate over the parents_ map
for (it = parents_.begin(); it != parents_.end(); it++) {
Parents::const_iterator it2 = cg.parents_.find(it->first.c_str());
if (it2 != cg.parents_.end()) {
Parents::const_iterator it2 = p->parents_.find(it->first.c_str());
if (it2 != p->parents_.end()) {
if (!(equal_with_abs_tol(it->second, it2->second, tol))) return false;
} else
return false;

View File

@ -4,7 +4,6 @@
* @author Christian Potthast
*/
// \callgraph
#pragma once
@ -14,128 +13,131 @@
#include <boost/utility.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/serialization/map.hpp>
#include <boost/serialization/string.hpp>
#include <boost/serialization/shared_ptr.hpp>
#include "Matrix.h"
#include "Conditional.h"
#include "VectorConfig.h"
#include "Ordering.h"
#include "Testable.h"
#include "Matrix.h"
namespace gtsam {
/**
* A conditional Gaussian functions as the node in a Bayes network
* It has a set of parents y,z, etc. and implements a probability density on x.
* The negative log-probability is given by || Rx - (d - Sy - Tz - ...)||^2
*/
class ConditionalGaussian : boost::noncopyable, public Testable<ConditionalGaussian>
{
public:
typedef std::map<std::string, Matrix> Parents;
typedef Parents::const_iterator const_iterator;
typedef boost::shared_ptr<ConditionalGaussian> shared_ptr;
protected:
/** the triangular matrix (square root information matrix) */
Matrix R_;
class Ordering;
/** the names and the matrices connecting to parent nodes */
Parents parents_;
/**
* A conditional Gaussian functions as the node in a Bayes network
* It has a set of parents y,z, etc. and implements a probability density on x.
* The negative log-probability is given by || Rx - (d - Sy - Tz - ...)||^2
*/
class ConditionalGaussian: public Conditional {
public:
typedef std::map<std::string, Matrix> Parents;
typedef Parents::const_iterator const_iterator;
typedef boost::shared_ptr<ConditionalGaussian> shared_ptr;
/** the RHS vector */
Vector d_;
protected:
public:
/** the triangular matrix (square root information matrix) */
Matrix R_;
/** constructor */
ConditionalGaussian() {};
/** Copy Constructor */
ConditionalGaussian(const ConditionalGaussian &cg) :
boost::noncopyable(), R_(cg.R_), parents_(cg.parents_), d_(cg.d_){}
/** constructor with no parents
* |Rx-d|
*/
ConditionalGaussian(Vector d,
Matrix R);
/** constructor with only one parent
* |Rx+Sy-d|
*/
ConditionalGaussian(Vector d,
Matrix R,
const std::string& name1,
Matrix S
);
/** constructor with two parents
* |Rx+Sy+Tz-d|
*/
ConditionalGaussian(Vector d,
Matrix R,
const std::string& name1,
Matrix S,
const std::string& name2,
Matrix T
);
/** the names and the matrices connecting to parent nodes */
Parents parents_;
/**
* constructor with number of arbitrary parents
* |Rx+sum(Ai*xi)-d|
*/
ConditionalGaussian(const Vector& d,
const Matrix& R,
const Parents& parents);
/** the RHS vector */
Vector d_;
/** deconstructor */
virtual ~ConditionalGaussian() {};
public:
/** print */
void print(const std::string& = "ConditionalGaussian") const;
/** default constructor needed for serialization */
ConditionalGaussian():Conditional("__unitialized__") {}
/** equals function */
bool equals(const ConditionalGaussian &cg, double tol=1e-9) const;
/** constructor */
ConditionalGaussian(const std::string& key) :
Conditional (key) {}
/** dimension of multivariate variable */
size_t dim() const {return R_.size2();}
/** constructor with no parents
* |Rx-d|
*/
ConditionalGaussian(const std::string& key, Vector d, Matrix R);
/** return all parents */
std::list<std::string> parents() const;
/** constructor with only one parent
* |Rx+Sy-d|
*/
ConditionalGaussian(const std::string& key, Vector d, Matrix R,
const std::string& name1, Matrix S);
/** return stuff contained in ConditionalGaussian */
const Vector& get_d() const {return d_;}
const Matrix& get_R() const {return R_;}
/** constructor with two parents
* |Rx+Sy+Tz-d|
*/
ConditionalGaussian(const std::string& key, Vector d, Matrix R,
const std::string& name1, Matrix S, const std::string& name2, Matrix T);
/** STL like, return the iterator pointing to the first node */
const_iterator const parentsBegin() const { return parents_.begin(); }
/**
* constructor with number of arbitrary parents
* |Rx+sum(Ai*xi)-d|
*/
ConditionalGaussian(const std::string& key, const Vector& d,
const Matrix& R, const Parents& parents);
/** STL like, return the iterator pointing to the last node */
const_iterator const parentsEnd() const { return parents_.end(); }
/** deconstructor */
virtual ~ConditionalGaussian() {}
/** find the number of parents */
size_t size() const {return parents_.size();}
/** print */
void print(const std::string& = "ConditionalGaussian") const;
/** determine whether a key is among the parents */
size_t contains(const std::string& key) const {return parents_.count(key);}
/** equals function */
bool equals(const Conditional &cg, double tol = 1e-9) const;
/**
* solve a conditional Gaussian
* @param x configuration in which the parents values (y,z,...) are known
* @return solution x = R \ (d - Sy - Tz - ...)
*/
virtual Vector solve(const VectorConfig& x) const;
/** dimension of multivariate variable */
size_t dim() const { return R_.size2();}
/**
* adds a parent
*/
void add(const std::string key, Matrix S){ parents_.insert(make_pair(key, S)); }
private:
/** return all parents */
std::list<std::string> parents() const;
/** return stuff contained in ConditionalGaussian */
const Vector& get_d() const { return d_;}
const Matrix& get_R() const { return R_;}
/** STL like, return the iterator pointing to the first node */
const_iterator const parentsBegin() const {
return parents_.begin();
}
/** STL like, return the iterator pointing to the last node */
const_iterator const parentsEnd() const {
return parents_.end();
}
/** find the number of parents */
size_t nrParents() const {
return parents_.size();
}
/** determine whether a key is among the parents */
size_t contains(const std::string& key) const {
return parents_.count(key);
}
/**
* solve a conditional Gaussian
* @param x configuration in which the parents values (y,z,...) are known
* @return solution x = R \ (d - Sy - Tz - ...)
*/
virtual Vector solve(const VectorConfig& x) const;
/**
* adds a parent
*/
void add(const std::string key, Matrix S) {
parents_.insert(make_pair(key, S));
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(key_);
ar & BOOST_SERIALIZATION_NVP(R_);
ar & BOOST_SERIALIZATION_NVP(d_);
ar & BOOST_SERIALIZATION_NVP(parents_);

View File

@ -12,40 +12,39 @@
using namespace gtsam;
using namespace std;
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian() {
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(
const string& key) :
ConditionalGaussian(key) {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(const Vector& v) :
ConditionalGaussian(v, eye(v.size())) {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(const Vector& b,
const Matrix& A) :
ConditionalGaussian(b, A) {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(const Vector& b,
const Matrix& A1, const std::string& parent, const Matrix& A2) :
ConditionalGaussian(b, A1, parent, A2) {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(const Vector& b,
const Matrix& A1, const std::string& parentY, const Matrix& A2,
const std::string& parentZ, const Matrix& A3)
: ConditionalGaussian(b, A1, parentY, A2, parentZ, A3)
{
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(const Matrix& A1,
const std::map<std::string, Matrix>& parents, const Vector& b)
: ConditionalGaussian(b, A1, parents)
{
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(
const ConstrainedConditionalGaussian& df) {
const string& key, const Vector& v) :
ConditionalGaussian(key, v, eye(v.size())) {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(
const string& key, const Vector& b, const Matrix& A) :
ConditionalGaussian(key, b, A) {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(
const string& key, const Vector& b, const Matrix& A1,
const std::string& parent, const Matrix& A2) :
ConditionalGaussian(key, b, A1, parent, A2) {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(
const string& key, const Vector& b, const Matrix& A1,
const std::string& parentY, const Matrix& A2, const std::string& parentZ,
const Matrix& A3) :
ConditionalGaussian(key, b, A1, parentY, A2, parentZ, A3) {
}
ConstrainedConditionalGaussian::ConstrainedConditionalGaussian(
const string& key, const Matrix& A1,
const std::map<std::string, Matrix>& parents, const Vector& b) :
ConditionalGaussian(key, b, A1, parents) {
}
Vector ConstrainedConditionalGaussian::solve(const VectorConfig& x) const {

View File

@ -33,14 +33,14 @@ public:
* Default Constructor
* Don't use this
*/
ConstrainedConditionalGaussian();
ConstrainedConditionalGaussian(const std::string& key);
/**
* Used for unary factors that simply associate a name with a particular value
* Can use backsubstitution to solve trivially
* @param value is a fixed value for x in the form x = value
*/
ConstrainedConditionalGaussian(const Vector& value);
ConstrainedConditionalGaussian(const std::string& key, const Vector& value);
/**
* Used for unary factors of the form Ax=b
@ -48,7 +48,7 @@ public:
* @param b is the RHS of the equation
* @param A is the A matrix
*/
ConstrainedConditionalGaussian(const Vector& value, const Matrix& A);
ConstrainedConditionalGaussian(const std::string& key, const Vector& value, const Matrix& A);
/**
* Binary constructor of the form A1*x = b - A2*y
@ -58,7 +58,7 @@ public:
* @param parent is the string identifier for the parent node
* @param A2 is the A2 matrix
*/
ConstrainedConditionalGaussian(const Vector& b, const Matrix& A1,
ConstrainedConditionalGaussian(const std::string& key, const Vector& b, const Matrix& A1,
const std::string& parent, const Matrix& A2);
/**
@ -70,7 +70,7 @@ public:
* @param parentZ string id for z
* @param A3 is the A3 matrix
*/
ConstrainedConditionalGaussian(const Vector& b, const Matrix& A1,
ConstrainedConditionalGaussian(const std::string& key, const Vector& b, const Matrix& A1,
const std::string& parentY, const Matrix& A2,
const std::string& parentZ, const Matrix& A3);
@ -81,14 +81,9 @@ public:
* @param parents is the map of parents (Ai and xi from above)
* @param b is the rhs vector
*/
ConstrainedConditionalGaussian(const Matrix& A1,
ConstrainedConditionalGaussian(const std::string& key, const Matrix& A1,
const std::map<std::string, Matrix>& parents, const Vector& b);
/**
* Copy constructor
*/
ConstrainedConditionalGaussian(const ConstrainedConditionalGaussian& df);
virtual ~ConstrainedConditionalGaussian() {
}

View File

@ -6,6 +6,7 @@
#include <iostream>
#include <boost/tuple/tuple.hpp>
#include <boost/foreach.hpp>
#include "Ordering.h"
#include "ConstrainedLinearFactorGraph.h"
using namespace std;
@ -78,12 +79,12 @@ GaussianBayesNet::shared_ptr ConstrainedLinearFactorGraph::eliminate(const Order
if (is_constrained(key))
{
ConditionalGaussian::shared_ptr ccg = eliminate_constraint(key);
cbn->insert(key,ccg);
cbn->insert(ccg);
}
else
{
ConditionalGaussian::shared_ptr cg = eliminateOne<ConditionalGaussian>(key);
cbn->insert(key,cg);
cbn->insert(cg);
}
}

View File

@ -11,6 +11,7 @@
#include <boost/shared_ptr.hpp>
#include <boost/serialization/map.hpp>
#include <boost/serialization/list.hpp>
#include <boost/serialization/vector.hpp>
#include <boost/serialization/shared_ptr.hpp>

View File

@ -20,6 +20,7 @@ template class BayesNet<ConditionalGaussian>;
// trick from some reading group
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
#define REVERSE_FOREACH_PAIR( KEY, VAL, COL) BOOST_REVERSE_FOREACH (boost::tie(KEY,VAL),COL)
/* ************************************************************************* */
boost::shared_ptr<VectorConfig> GaussianBayesNet::optimize() const
@ -27,11 +28,9 @@ boost::shared_ptr<VectorConfig> GaussianBayesNet::optimize() const
boost::shared_ptr<VectorConfig> result(new VectorConfig);
/** solve each node in turn in topological sort order (parents first)*/
BOOST_FOREACH(string key, keys_) {
const_iterator cg = nodes_.find(key); // get node
assert( cg != nodes_.end() ); // make sure it exists
Vector x = cg->second->solve(*result); // Solve for that variable
result->insert(key,x); // store result in partial solution
BOOST_REVERSE_FOREACH(ConditionalGaussian::shared_ptr cg,conditionals_) {
Vector x = cg->solve(*result); // Solve for that variable
result->insert(cg->key(),x); // store result in partial solution
}
return result;
}
@ -41,22 +40,19 @@ pair<Matrix,Vector> GaussianBayesNet::matrix() const {
// add the dimensions of all variables to get matrix dimension
// and at the same time create a mapping from keys to indices
size_t N=0; map<string,size_t> indices;
BOOST_REVERSE_FOREACH(string key, keys_) {
// find corresponding node
const_iterator it = nodes_.find(key);
indices.insert(make_pair(key,N));
N += it->second->dim();
size_t N=0; map<string,size_t> mapping;
BOOST_FOREACH(ConditionalGaussian::shared_ptr cg,conditionals_) {
mapping.insert(make_pair(cg->key(),N));
N += cg->dim();
}
// create matrix and copy in values
Matrix R = zeros(N,N);
Vector d(N);
string key; size_t I;
FOREACH_PAIR(key,I,indices) {
// find corresponding node
const_iterator it = nodes_.find(key);
ConditionalGaussian::shared_ptr cg = it->second;
string key; size_t I;
FOREACH_PAIR(key,I,mapping) {
// find corresponding conditional
ConditionalGaussian::shared_ptr cg = (*this)[key];
// get RHS and copy to d
const Vector& d_ = cg->get_d();
@ -68,17 +64,17 @@ pair<Matrix,Vector> GaussianBayesNet::matrix() const {
const Matrix& R_ = cg->get_R();
for (size_t i=0;i<n;i++)
for(size_t j=0;j<n;j++)
R(I+i,I+j) = R_(i,j);
R(I+i,I+j) = R_(i,j);
// loop over S matrices and copy them into R
ConditionalGaussian::const_iterator keyS = cg->parentsBegin();
for (; keyS!=cg->parentsEnd(); keyS++) {
Matrix S = keyS->second; // get S matrix
const size_t m = S.size1(), n = S.size2(); // find S size
const size_t J = indices[keyS->first]; // find column index
const size_t J = mapping[keyS->first]; // find column index
for (size_t i=0;i<m;i++)
for(size_t j=0;j<n;j++)
R(I+i,J+j) = S(i,j);
for(size_t j=0;j<n;j++)
R(I+i,J+j) = S(i,j);
} // keyS
} // keyI

View File

@ -81,7 +81,7 @@ ConstrainedConditionalGaussian::shared_ptr LinearConstraint::eliminate(const std
parents.erase(key);
// construct resulting CCG with parts
ConstrainedConditionalGaussian::shared_ptr ccg(new ConstrainedConditionalGaussian(A1, parents, b));
ConstrainedConditionalGaussian::shared_ptr ccg(new ConstrainedConditionalGaussian(key, A1, parents, b));
return ccg;
}

View File

@ -7,6 +7,10 @@
#include <boost/foreach.hpp>
#include <boost/tuple/tuple.hpp>
#include "Matrix.h"
#include "Ordering.h"
#include "ConditionalGaussian.h"
#include "LinearFactor.h"
using namespace std;
@ -20,6 +24,18 @@ using namespace gtsam;
typedef pair<const string, Matrix>& mypair;
/* ************************************************************************* */
LinearFactor::LinearFactor(const boost::shared_ptr<ConditionalGaussian> cg) :
b(cg->get_d()) {
As.insert(make_pair(cg->key(), cg->get_R()));
std::map<std::string, Matrix>::const_iterator it = cg->parentsBegin();
for (; it != cg->parentsEnd(); it++) {
const std::string& j = it->first;
const Matrix& Aj = it->second;
As.insert(make_pair(j, Aj));
}
}
/* ************************************************************************* */
LinearFactor::LinearFactor(const vector<shared_ptr> & factors)
{
@ -186,7 +202,7 @@ LinearFactor::eliminate(const string& key)
// if this factor does not involve key, we exit with empty CG and LF
if (it==As.end()) {
// Conditional Gaussian is just a parent-less node with P(x)=1
ConditionalGaussian::shared_ptr cg(new ConditionalGaussian);
ConditionalGaussian::shared_ptr cg(new ConditionalGaussian(key));
return make_pair(cg,lf);
}
@ -227,7 +243,7 @@ LinearFactor::eliminate(const string& key)
} // column j
// create ConditionalGaussian with first n rows
ConditionalGaussian::shared_ptr cg (new ConditionalGaussian(::sub(b,0,n), sub(R,0,n,0,n)) );
ConditionalGaussian::shared_ptr cg (new ConditionalGaussian(key,::sub(b,0,n), sub(R,0,n,0,n)) );
// create linear factor with remaining rows
lf->set_b(::sub(b,n,m));

View File

@ -9,23 +9,18 @@
#pragma once
#include <list>
#include <map>
#include <set>
#include <ostream>
#include <boost/shared_ptr.hpp>
#include <vector>
#include <boost/serialization/map.hpp>
#include "Matrix.h"
#include "Factor.h"
#include "LinearFactorSet.h"
#include "ConditionalGaussian.h"
#include "Ordering.h"
#define CONSTRUCTOR
#include "Matrix.h"
#include "VectorConfig.h"
namespace gtsam {
class ConditionalGaussian;
class Ordering;
/**
* Base Class for a linear factor.
* LinearFactor is non-mutable (all methods const!).
@ -50,20 +45,17 @@ public:
}
/** Construct Null factor */
CONSTRUCTOR
LinearFactor(const Vector& b_in) :
b(b_in) { //TODO: add a way to initializing base class meaningfully
}
/** Construct unary factor */
CONSTRUCTOR
LinearFactor(const std::string& key1, const Matrix& A1, const Vector& b_in) :
b(b_in) {
As.insert(make_pair(key1, A1));
}
/** Construct binary factor */
CONSTRUCTOR
LinearFactor(const std::string& key1, const Matrix& A1,
const std::string& key2, const Matrix& A2, const Vector& b_in) :
b(b_in) {
@ -72,7 +64,6 @@ public:
}
/** Construct ternary factor */
CONSTRUCTOR
LinearFactor(const std::string& key1, const Matrix& A1,
const std::string& key2, const Matrix& A2, const std::string& key3,
const Matrix& A3, const Vector& b_in) :
@ -83,7 +74,6 @@ public:
}
/** Construct an n-ary factor */
CONSTRUCTOR
LinearFactor(const std::vector<std::pair<std::string, Matrix> > &terms,
const Vector &b_in) :
b(b_in) {
@ -92,24 +82,12 @@ public:
}
/** Construct from Conditional Gaussian */
CONSTRUCTOR
LinearFactor(const std::string& key, const boost::shared_ptr<
ConditionalGaussian> cg) :
b(cg->get_d()) {
As.insert(make_pair(key, cg->get_R()));
std::map<std::string, Matrix>::const_iterator it = cg->parentsBegin();
for (; it != cg->parentsEnd(); it++) {
const std::string& j = it->first;
const Matrix& Aj = it->second;
As.insert(make_pair(j, Aj));
}
}
LinearFactor(const boost::shared_ptr<ConditionalGaussian> cg);
/**
* Constructor that combines a set of factors
* @param factors Set of factors to combine
*/
CONSTRUCTOR
LinearFactor(const std::vector<shared_ptr> & factors);
// Implementing Testable virtual functions
@ -212,7 +190,7 @@ public:
* @param key the key of the node to be eliminated
* @return a new factor and a conditional gaussian on the eliminated variable
*/
std::pair<ConditionalGaussian::shared_ptr, shared_ptr> eliminate(const std::string& key);
std::pair<boost::shared_ptr<ConditionalGaussian>, shared_ptr> eliminate(const std::string& key);
/**
* Take the factor f, and append to current matrices. Not very general.

View File

@ -15,6 +15,7 @@
#include "GaussianBayesNet.h"
#include "FactorGraph-inl.h"
#include "LinearFactorGraph.h"
#include "LinearFactorSet.h"
using namespace std;
using namespace gtsam;
@ -34,7 +35,7 @@ void LinearFactorGraph::setCBN(const GaussianBayesNet& CBN)
clear();
GaussianBayesNet::const_iterator it = CBN.begin();
for(; it != CBN.end(); it++) {
LinearFactor::shared_ptr lf(new LinearFactor(it->first, it->second));
LinearFactor::shared_ptr lf(new LinearFactor(*it));
push_back(lf);
}
}
@ -62,7 +63,7 @@ LinearFactorGraph::eliminate_partially(const Ordering& ordering)
BOOST_FOREACH(string key, ordering) {
ConditionalGaussian::shared_ptr cg = eliminateOne<ConditionalGaussian>(key);
chordalBayesNet->insert(key,cg);
chordalBayesNet->insert(cg);
}
return chordalBayesNet;

View File

@ -13,14 +13,14 @@
#pragma once
#include <boost/shared_ptr.hpp>
#include "LinearFactor.h"
#include "VectorConfig.h"
#include "FactorGraph.h"
#include "GaussianBayesNet.h"
#include "LinearFactor.h"
namespace gtsam {
class Ordering;
class GaussianBayesNet;
/**
* A Linear Factor Graph is a factor graph where all factors are Gaussian, i.e.
* Factor == LinearFactor

View File

@ -161,7 +161,7 @@ testVSLAMFactor_LDADD = libgtsam.la
# The header files will be installed in ~/include/gtsam
headers = gtsam.h Value.h Testable.h Factor.h LinearFactorSet.h
headers = gtsam.h Value.h Testable.h Factor.h Conditional.h LinearFactorSet.h
headers += Point2Prior.h Simulated2DOdometry.h Simulated2DMeasurement.h smallExample.h
headers += $(sources:.cpp=.h)
# templates:

View File

@ -12,14 +12,14 @@
#include <string>
#include <boost/shared_ptr.hpp>
#include <boost/foreach.hpp> // TODO: make cpp file
#include "Testable.h"
#include "Conditional.h"
namespace gtsam {
/**
* Conditional node for use in a Bayes net
*/
class SymbolicConditional: Testable<SymbolicConditional> {
class SymbolicConditional: public Conditional {
private:
@ -33,20 +33,24 @@ namespace gtsam {
/**
* No parents
*/
SymbolicConditional() {
SymbolicConditional(const std::string& key) :
Conditional(key) {
}
/**
* Single parent
*/
SymbolicConditional(const std::string& parent) {
SymbolicConditional(const std::string& key, const std::string& parent) :
Conditional(key) {
parents_.push_back(parent);
}
/**
* Two parents
*/
SymbolicConditional(const std::string& parent1, const std::string& parent2) {
SymbolicConditional(const std::string& key, const std::string& parent1,
const std::string& parent2) :
Conditional(key) {
parents_.push_back(parent1);
parents_.push_back(parent2);
}
@ -54,24 +58,34 @@ namespace gtsam {
/**
* A list
*/
SymbolicConditional(const std::list<std::string>& parents):parents_(parents) {
SymbolicConditional(const std::string& key,
const std::list<std::string>& parents) :
Conditional(key), parents_(parents) {
}
/** print */
void print(const std::string& s = "SymbolicConditional") const {
std::cout << s;
std::cout << s << " P(" << key_ << " |";
BOOST_FOREACH(std::string parent, parents_) std::cout << " " << parent;
std::cout << std::endl;
std::cout << ")" << std::endl;
}
/** check equality */
bool equals(const SymbolicConditional& other, double tol = 1e-9) const {
return parents_ == other.parents_;
bool equals(const Conditional& c, double tol = 1e-9) const {
if (!Conditional::equals(c)) return false;
const SymbolicConditional* p = dynamic_cast<const SymbolicConditional*> (&c);
if (p == NULL) return false;
return parents_ == p->parents_;
}
/** return any parent */
/** return parents */
std::list<std::string> parents() const { return parents_;}
/** find the number of parents */
size_t nrParents() const {
return parents_.size();
}
};
} /// namespace gtsam

View File

@ -59,7 +59,7 @@ namespace gtsam {
boost::shared_ptr<SymbolicFactor> lf(new SymbolicFactor(separator));
// create SymbolicConditional on separator
SymbolicConditional::shared_ptr cg (new SymbolicConditional(separator));
SymbolicConditional::shared_ptr cg (new SymbolicConditional(key,separator));
return make_pair(cg,lf);
}

View File

@ -22,14 +22,14 @@ namespace gtsam {
SymbolicBayesNet::shared_ptr
SymbolicFactorGraph::eliminate(const Ordering& ordering)
{
SymbolicBayesNet::shared_ptr bayesChain (new SymbolicBayesNet());
SymbolicBayesNet::shared_ptr bayesNet (new SymbolicBayesNet());
BOOST_FOREACH(string key, ordering) {
SymbolicConditional::shared_ptr conditional = eliminateOne<SymbolicConditional>(key);
bayesChain->insert(key,conditional);
bayesNet->insert(conditional);
}
return bayesChain;
return bayesNet;
}
/* ************************************************************************* */

View File

@ -200,11 +200,11 @@ GaussianBayesNet createSmallGaussianBayesNet()
// define nodes and specify in reverse topological sort (i.e. parents last)
ConditionalGaussian::shared_ptr
x(new ConditionalGaussian(d1,R11,"y",S12)),
y(new ConditionalGaussian(d2,R22));
Px_y(new ConditionalGaussian("x",d1,R11,"y",S12)),
Py(new ConditionalGaussian("y",d2,R22));
GaussianBayesNet cbn;
cbn.insert("x",x);
cbn.insert("y",y);
cbn.insert(Px_y);
cbn.insert(Py);
return cbn;
}

View File

@ -4,31 +4,33 @@
* @author Frank Dellaert
*/
#include <boost/assign/list_inserter.hpp> // for 'insert()'
#include <boost/assign/std/list.hpp> // for operator +=
using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include "SymbolicBayesNet.h"
#include "GaussianBayesNet.h"
#include "Ordering.h"
#include "BayesTree-inl.h"
#include "SmallExample.h"
#include "smallExample.h"
using namespace gtsam;
// Conditionals for ASIA example from the tutorial with A and D evidence
SymbolicConditional::shared_ptr B(new SymbolicConditional()), L(
new SymbolicConditional("B")), E(new SymbolicConditional("L", "B")), S(
new SymbolicConditional("L", "B")), T(new SymbolicConditional("E", "L")),
X(new SymbolicConditional("E"));
SymbolicConditional::shared_ptr B(new SymbolicConditional("B")), L(
new SymbolicConditional("L", "B")), E(
new SymbolicConditional("E", "L", "B")), S(new SymbolicConditional("S",
"L", "B")), T(new SymbolicConditional("T", "E", "L")), X(
new SymbolicConditional("X", "E"));
/* ************************************************************************* */
TEST( BayesTree, Front )
{
Front<SymbolicConditional> f1("B", B);
f1.add("L", L);
Front<SymbolicConditional> f2("L", L);
f2.add("B", B);
Front<SymbolicConditional> f1(B);
f1.add(L);
Front<SymbolicConditional> f2(L);
f2.add(B);
CHECK(f1.equals(f1));
CHECK(!f1.equals(f2));
}
@ -38,31 +40,31 @@ TEST( BayesTree, constructor )
{
// Create using insert
BayesTree<SymbolicConditional> bayesTree;
bayesTree.insert("B", B);
bayesTree.insert("L", L);
bayesTree.insert("E", E);
bayesTree.insert("S", S);
bayesTree.insert("T", T);
bayesTree.insert("X", X);
bayesTree.insert(B);
bayesTree.insert(L);
bayesTree.insert(E);
bayesTree.insert(S);
bayesTree.insert(T);
bayesTree.insert(X);
// Check Size
LONGS_EQUAL(4,bayesTree.size());
// Check root
Front<SymbolicConditional> expected_root("B", B);
expected_root.add("L", L);
expected_root.add("E", E);
Front<SymbolicConditional> expected_root(B);
expected_root.add(L);
expected_root.add(E);
Front<SymbolicConditional> actual_root = bayesTree.root();
CHECK(assert_equal(expected_root,actual_root));
// Create from symbolic Bayes chain in which we want to discover cliques
SymbolicBayesNet ASIA;
ASIA.insert("X", X);
ASIA.insert("T", T);
ASIA.insert("S", S);
ASIA.insert("E", E);
ASIA.insert("L", L);
ASIA.insert("B", B);
ASIA.insert(X);
ASIA.insert(T);
ASIA.insert(S);
ASIA.insert(E);
ASIA.insert(L);
ASIA.insert(B);
BayesTree<SymbolicConditional> bayesTree2(ASIA);
// Check whether the same

View File

@ -17,7 +17,6 @@
#include "Matrix.h"
#include "ConditionalGaussian.h"
using namespace gtsam;
/* ************************************************************************* */
@ -42,8 +41,8 @@ TEST( ConditionalGaussian, equals )
d(0) = 0.2; d(1) = 0.5;
ConditionalGaussian
expected(d, R, "x1", A1, "l1", A2),
actual(d, R, "x1", A1, "l1", A2);
expected("x",d, R, "x1", A1, "l1", A2),
actual("x",d, R, "x1", A1, "l1", A2);
CHECK( expected.equals(actual) );
@ -72,7 +71,7 @@ TEST( ConditionalGaussian, solve )
Vector d(2);
d(0) = 0.2; d(1) = 0.5;
ConditionalGaussian cg(d, R, "x1", A1, "l1", A2);
ConditionalGaussian cg("x",d, R, "x1", A1, "l1", A2);
Vector sx1(2);
sx1(0) = 0.2; sx1(1) = 0.5;
@ -96,39 +95,38 @@ TEST( ConditionalGaussian, solve )
#ifdef HAVE_BOOST_SERIALIZATION
TEST( ConditionalGaussian, serialize )
{
// // create a conditional gaussion node
// Matrix A1(2,2);
// A1(0,0) = 1 ; A1(1,0) = 2;
// A1(0,1) = 3 ; A1(1,1) = 4;
//
// Matrix A2(2,2);
// A2(0,0) = 6 ; A2(1,0) = 0.2;
// A2(0,1) = 8 ; A2(1,1) = 0.4;
//
// Matrix R(2,2);
// R(0,0) = 0.1 ; R(1,0) = 0.3;
// R(0,1) = 0.0 ; R(1,1) = 0.34;
//
// Vector d(2);
// d(0) = 0.2; d(1) = 0.5;
//
// ConditionalGaussian cg(d, R, "x1", A1, "l1", A2);
//
// //serialize the CG
// std::ostringstream in_archive_stream;
// boost::archive::text_oarchive in_archive(in_archive_stream);
// in_archive << cg;
// std::string serialized = in_archive_stream.str();
//
// //deserialize the CGg
// std::istringstream out_archive_stream(serialized);
// boost::archive::text_iarchive out_archive(out_archive_stream);
// ConditionalGaussian output;
// out_archive >> output;
//
// //check for equality
// CHECK(cg.equals(output));
// create a conditional gaussion node
Matrix A1(2,2);
A1(0,0) = 1 ; A1(1,0) = 2;
A1(0,1) = 3 ; A1(1,1) = 4;
Matrix A2(2,2);
A2(0,0) = 6 ; A2(1,0) = 0.2;
A2(0,1) = 8 ; A2(1,1) = 0.4;
Matrix R(2,2);
R(0,0) = 0.1 ; R(1,0) = 0.3;
R(0,1) = 0.0 ; R(1,1) = 0.34;
Vector d(2);
d(0) = 0.2; d(1) = 0.5;
ConditionalGaussian cg("x2", d, R, "x1", A1, "l1", A2);
//serialize the CG
std::ostringstream in_archive_stream;
boost::archive::text_oarchive in_archive(in_archive_stream);
in_archive << cg;
std::string serialized = in_archive_stream.str();
//deserialize the CGg
std::istringstream out_archive_stream(serialized);
boost::archive::text_iarchive out_archive(out_archive_stream);
ConditionalGaussian output;
out_archive >> output;
//check for equality
CHECK(cg.equals(output));
}
#endif //HAVE_BOOST_SERIALIZATION
/* ************************************************************************* */

View File

@ -17,7 +17,7 @@ TEST (ConstrainedConditionalGaussian, basic_unary1 )
// check unary constructor that doesn't require an R matrix
// assumed identity matrix
ConstrainedConditionalGaussian unary(v);
ConstrainedConditionalGaussian unary("x1",v);
VectorConfig fg;
fg.insert("x1", v);
@ -32,7 +32,7 @@ TEST (ConstrainedConditionalGaussian, basic_unary2 )
// check unary constructor that makes use of a A matrix
Matrix A = eye(2) * 10;
ConstrainedConditionalGaussian unary(10*v, A);
ConstrainedConditionalGaussian unary("x1",10*v, A);
VectorConfig fg;
fg.insert("x1", v);
@ -51,7 +51,7 @@ TEST (ConstrainedConditionalGaussian, basic_unary3 )
A(1,0) = 2.0 ; A(1,1) = 1.0;
Vector rhs = A*v;
ConstrainedConditionalGaussian unary(rhs, A);
ConstrainedConditionalGaussian unary("x1",rhs, A);
VectorConfig fg;
fg.insert("x1", v);
@ -84,7 +84,7 @@ TEST (ConstrainedConditionalGaussian, basic_binary1 )
Vector expected = Vector_(2, -3.3333, 0.6667);
ConstrainedConditionalGaussian binary(b, A1, "x1", A2);
ConstrainedConditionalGaussian binary("x2",b, A1, "x1", A2);
CHECK(assert_equal(expected, binary.solve(fg), 1e-4));
}
@ -119,7 +119,7 @@ TEST (ConstrainedConditionalGaussian, basic_ternary1 )
Vector expected = Vector_(2, 6.6667, -9.3333);
ConstrainedConditionalGaussian ternary(b, A1, "x1", A2, "x2", A3);
ConstrainedConditionalGaussian ternary("x3",b, A1, "x1", A2, "x2", A3);
CHECK(assert_equal(expected, ternary.solve(fg), 1e-4));
}

View File

@ -7,6 +7,7 @@
#include <CppUnitLite/TestHarness.h>
#include "ConstrainedLinearFactorGraph.h"
#include "LinearFactorGraph.h"
#include "Ordering.h"
#include "smallExample.h"
using namespace gtsam;
@ -40,7 +41,7 @@ TEST( ConstrainedLinearFactorGraph, elimination1 )
Ax1(1, 0) = 2.0; Ax1(1, 1) = 1.0;
Matrix Ay1 = eye(2) * 10;
Vector b2 = Vector_(2, 1.0, 2.0);
ConstrainedConditionalGaussian expectedCCG1(b2, Ax1, "y", Ay1);
ConstrainedConditionalGaussian expectedCCG1("x",b2, Ax1, "y", Ay1);
CHECK(expectedCCG1.equals(*((*cbn)["x"])));
// verify remaining factor on y
@ -64,7 +65,7 @@ TEST( ConstrainedLinearFactorGraph, elimination1 )
R(0, 0) = 74.5356; R(0, 1) = -59.6285;
R(1, 0) = 0.0; R(1, 1) = 44.7214;
Vector br = Vector_(2, 8.9443, 4.4721);
ConditionalGaussian expected2(br, R);
ConditionalGaussian expected2("y",br, R);
CHECK(expected2.equals(*((*cbn)["y"])));
}
@ -236,18 +237,18 @@ TEST( ConstrainedLinearFactorGraph, eliminate_multi_constraint )
// eliminate the constraint
ConstrainedConditionalGaussian::shared_ptr cg1 = fg.eliminate_constraint("x");
CHECK(cg1->size() == 1);
CHECK(cg1->nrParents() == 1);
CHECK(fg.nrFactors() == 1);
// eliminate the induced constraint
ConstrainedConditionalGaussian::shared_ptr cg2 = fg.eliminate_constraint("y");
CHECK(cg2->size() == 1);
CHECK(cg2->nrParents() == 1);
CHECK(fg.nrFactors() == 0);
// eliminate the linear factor
ConditionalGaussian::shared_ptr cg3 = fg.eliminateOne<ConditionalGaussian>("z");
CHECK(cg3->nrParents() == 0);
CHECK(fg.size() == 0);
CHECK(cg3->size() == 0);
// solve piecewise
VectorConfig actual;

View File

@ -20,6 +20,7 @@
#include "GaussianBayesNet.h"
#include "smallExample.h"
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
@ -35,7 +36,7 @@ TEST( GaussianBayesNet, constructor )
d1(0) = 9; d2(0) = 5;
// define nodes and specify in reverse topological sort (i.e. parents last)
ConditionalGaussian x(d1,R11,"y",S12), y(d2,R22);
ConditionalGaussian x("x",d1,R11,"y",S12), y("y",d2,R22);
// check small example which uses constructor
GaussianBayesNet cbn = createSmallGaussianBayesNet();
@ -82,44 +83,40 @@ TEST( GaussianBayesNet, optimize )
#ifdef HAVE_BOOST_SERIALIZATION
TEST( GaussianBayesNet, serialize )
{
// //create a starting CBN
// GaussianBayesNet cbn = createSmallGaussianBayesNet();
//
// //serialize the CBN
// std::ostringstream in_archive_stream;
// boost::archive::text_oarchive in_archive(in_archive_stream);
// in_archive << cbn;
// std::string serialized = in_archive_stream.str();
//
// //DEBUG
// std::cout << "CBN Raw string: [" << serialized << "]" << std::endl;
//
// //remove newlines/carriage returns
// std::string clean;
// BOOST_FOREACH(char s, serialized)
// {
// if (s != '\n')
// {
// //copy in character
// clean.append(std::string(1,s));
// }
// else
// {
// std::cout << " Newline character found!" << std::endl;
// //replace with an identifiable string
// clean.append(std::string(1,' '));
// }
// }
//
//
// std::cout << "Cleaned CBN String: [" << clean << "]" << std::endl;
//
// //deserialize the CBN
// std::istringstream out_archive_stream(clean);
// boost::archive::text_iarchive out_archive(out_archive_stream);
// GaussianBayesNet output;
// out_archive >> output;
// CHECK(cbn.equals(output));
//create a starting CBN
GaussianBayesNet cbn = createSmallGaussianBayesNet();
//serialize the CBN
ostringstream in_archive_stream;
boost::archive::text_oarchive in_archive(in_archive_stream);
in_archive << cbn;
string serialized = in_archive_stream.str();
//DEBUG
cout << "CBN Raw string: [" << serialized << "]" << endl;
//remove newlines/carriage returns
string clean;
BOOST_FOREACH(char s, serialized) {
if (s != '\n') {
//copy in character
clean.append(string(1,s));
}
else {
cout << " Newline character found!" << endl;
//replace with an identifiable string
clean.append(string(1,' '));
}
}
cout << "Cleaned CBN String: [" << clean << "]" << endl;
//deserialize the CBN
istringstream out_archive_stream(clean);
boost::archive::text_iarchive out_archive(out_archive_stream);
GaussianBayesNet output;
out_archive >> output;
CHECK(cbn.equals(output));
}
#endif //HAVE_BOOST_SERIALIZATION

View File

@ -14,6 +14,8 @@ using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include "Matrix.h"
#include "Ordering.h"
#include "ConditionalGaussian.h"
#include "smallExample.h"
using namespace std;
@ -314,7 +316,7 @@ TEST( LinearFactor, eliminate )
+0.00,-8.94427
);
Vector d(2); d(0) = 2.23607; d(1) = -1.56525;
ConditionalGaussian expectedCG(d,R11,"l1",S12,"x1",S13);
ConditionalGaussian expectedCG("x2",d,R11,"l1",S12,"x1",S13);
// the expected linear factor
Matrix Bl1 = Matrix_(2,2,
@ -384,7 +386,7 @@ TEST( LinearFactor, eliminate2 )
+0.00,-2.23607,+0.00,-8.94427
);
Vector d(2); d(0) = 2.23607; d(1) = -1.56525;
ConditionalGaussian expectedCG(d,R11,"l1x1",S12);
ConditionalGaussian expectedCG("x2",d,R11,"l1x1",S12);
// the expected linear factor
Matrix Bl1x1 = Matrix_(2,4,
@ -424,7 +426,7 @@ TEST( LinearFactor, eliminate_empty )
boost::tie(actualCG,actualLF) = f.eliminate("x2");
// expected Conditional Gaussian is just a parent-less node with P(x)=1
ConditionalGaussian expectedCG;
ConditionalGaussian expectedCG("x2");
// expected remaining factor is still empty :-)
LinearFactor expectedLF;
@ -495,8 +497,8 @@ TEST( LinearFactor, CONSTRUCTOR_ConditionalGaussian )
+0.00,-2.23607
);
Vector d(2); d(0) = 2.23607; d(1) = -1.56525;
ConditionalGaussian::shared_ptr CG(new ConditionalGaussian(d,R11,"l1x1",S12) );
LinearFactor actualLF("x2",CG);
ConditionalGaussian::shared_ptr CG(new ConditionalGaussian("x2",d,R11,"l1x1",S12) );
LinearFactor actualLF(CG);
// actualLF.print();
LinearFactor expectedLF("x2",R11,"l1x1",S12,d);

View File

@ -13,8 +13,11 @@ using namespace std;
using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include "Matrix.h"
#include "Ordering.h"
#include "smallExample.h"
#include "GaussianBayesNet.h"
using namespace gtsam;
@ -182,7 +185,7 @@ TEST( LinearFactorGraph, eliminateOne_x1 )
+0.00,-6.66667
);
Vector d(2); d(0) = -2; d(1) = -1.0/3.0;
ConditionalGaussian expected(d,R11,"l1",S12,"x2",S13);
ConditionalGaussian expected("x1",d,R11,"l1",S12,"x2",S13);
CHECK(assert_equal(expected,*actual,tol));
}
@ -209,7 +212,7 @@ TEST( LinearFactorGraph, eliminateOne_x2 )
+0.00,-8.94427
);
Vector d(2); d(0) = 2.23607; d(1) = -1.56525;
ConditionalGaussian expected(d,R11,"l1",S12,"x1",S13);
ConditionalGaussian expected("x2",d,R11,"l1",S12,"x1",S13);
CHECK(assert_equal(expected,*actual,tol));
}
@ -235,7 +238,7 @@ TEST( LinearFactorGraph, eliminateOne_l1 )
+0.00,-3.53553
);
Vector d(2); d(0) = -0.707107; d(1) = 1.76777;
ConditionalGaussian expected(d,R11,"x1",S12,"x2",S13);
ConditionalGaussian expected("l1",d,R11,"x1",S12,"x2",S13);
CHECK(assert_equal(expected,*actual,tol));
}
@ -248,7 +251,7 @@ TEST( LinearFactorGraph, eliminateAll )
0.0, 10};
Matrix R1 = Matrix_(2,2, data1);
Vector d1(2); d1(0) = -1; d1(1) = -1;
ConditionalGaussian::shared_ptr cg1(new ConditionalGaussian(d1, R1));
ConditionalGaussian::shared_ptr cg1(new ConditionalGaussian("x1",d1, R1));
double data21[] = { 6.7082, 0.0,
0.0, 6.7082};
@ -257,7 +260,7 @@ TEST( LinearFactorGraph, eliminateAll )
0.0, -6.7082};
Matrix A1 = Matrix_(2,2, data22);
Vector d2(2); d2(0) = 0.0; d2(1) = 1.34164;
ConditionalGaussian::shared_ptr cg2(new ConditionalGaussian(d2, R2, "x1", A1));
ConditionalGaussian::shared_ptr cg2(new ConditionalGaussian("l1",d2, R2, "x1", A1));
double data31[] = { 11.1803, 0.0,
0.0, 11.1803};
@ -270,12 +273,12 @@ TEST( LinearFactorGraph, eliminateAll )
Matrix A22 = Matrix_(2,2, data33);
Vector d3(2); d3(0) = 2.23607; d3(1) = -1.56525;
ConditionalGaussian::shared_ptr cg3(new ConditionalGaussian(d3, R3, "l1", A21, "x1", A22));
ConditionalGaussian::shared_ptr cg3(new ConditionalGaussian("x2",d3, R3, "l1", A21, "x1", A22));
GaussianBayesNet expected;
expected.insert("x2", cg3);
expected.insert("l1", cg2);
expected.insert("x1", cg1);
expected.insert(cg3);
expected.insert(cg2);
expected.insert(cg1);
// Check one ordering
LinearFactorGraph fg1 = createLinearFactorGraph();

View File

@ -13,6 +13,7 @@ using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include "Matrix.h"
#include "Ordering.h"
#include "smallExample.h"
// template definitions

View File

@ -10,6 +10,7 @@ using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include "Ordering.h"
#include "smallExample.h"
#include "SymbolicBayesNet.h"
#include "SymbolicFactorGraph.h"
@ -22,13 +23,13 @@ TEST( SymbolicBayesNet, constructor )
{
// Create manually
SymbolicConditional::shared_ptr
x2(new SymbolicConditional("l1", "x1")),
l1(new SymbolicConditional("x1")),
x1(new SymbolicConditional());
x2(new SymbolicConditional("x2","l1", "x1")),
l1(new SymbolicConditional("l1","x1")),
x1(new SymbolicConditional("x1"));
SymbolicBayesNet expected;
expected.insert("x2",x2);
expected.insert("l1",l1);
expected.insert("x1",x1);
expected.insert(x2);
expected.insert(l1);
expected.insert(x1);
// Create from a factor graph
LinearFactorGraph factorGraph = createLinearFactorGraph();

View File

@ -9,6 +9,7 @@ using namespace boost::assign;
#include <CppUnitLite/TestHarness.h>
#include "Ordering.h"
#include "smallExample.h"
#include "SymbolicFactorGraph.h"
#include "SymbolicBayesNet.h"
@ -114,7 +115,7 @@ TEST( LinearFactorGraph, eliminateOne )
fg.eliminateOne<SymbolicConditional>("x1");
// create expected symbolic Conditional
SymbolicConditional expected("l1","x2");
SymbolicConditional expected("x1","l1","x2");
CHECK(assert_equal(expected,*actual));
}
@ -123,14 +124,14 @@ TEST( LinearFactorGraph, eliminateOne )
TEST( LinearFactorGraph, eliminate )
{
// create expected Chordal bayes Net
SymbolicConditional::shared_ptr x2(new SymbolicConditional("l1", "x1"));
SymbolicConditional::shared_ptr l1(new SymbolicConditional("x1"));
SymbolicConditional::shared_ptr x1(new SymbolicConditional());
SymbolicConditional::shared_ptr x2(new SymbolicConditional("x2", "l1", "x1"));
SymbolicConditional::shared_ptr l1(new SymbolicConditional("l1", "x1"));
SymbolicConditional::shared_ptr x1(new SymbolicConditional("x1"));
SymbolicBayesNet expected;
expected.insert("x2", x2);
expected.insert("l1", l1);
expected.insert("x1", x1);
expected.insert(x2);
expected.insert(l1);
expected.insert(x1);
// create a test graph
LinearFactorGraph factorGraph = createLinearFactorGraph();