Further optimization with another ~9% speed improvement.
Don't retriangulate on linearize if previous triangulation involved same poses Added noalias in non-blockwise portion Added exception handling for project() functionrelease/4.3a0
parent
6d6ee8debc
commit
a8d1072a02
|
|
@ -30,7 +30,56 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
class SmartProjectionFactorState;
|
||||
/**
|
||||
* Structure for storing some state memory, used to speed up optimization
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class SmartProjectionFactorState {
|
||||
public:
|
||||
|
||||
static int lastID;
|
||||
int ID;
|
||||
|
||||
SmartProjectionFactorState() {
|
||||
ID = lastID++;
|
||||
calculatedHessian = false;
|
||||
}
|
||||
|
||||
// Linearization point
|
||||
Values values;
|
||||
std::vector<Pose3> cameraPosesLinearization;
|
||||
|
||||
// Triangulation at current linearization point
|
||||
Point3 point;
|
||||
std::vector<Pose3> cameraPosesTriangulation;
|
||||
bool degenerate;
|
||||
bool cheiralityException;
|
||||
|
||||
// Overall reprojection error
|
||||
double overallError;
|
||||
std::vector<Pose3> cameraPosesError;
|
||||
|
||||
// Hessian
|
||||
bool calculatedHessian;
|
||||
Matrix H;
|
||||
Vector gs_vector;
|
||||
double f;
|
||||
|
||||
std::vector<Matrix> Gs;
|
||||
std::vector<Vector> gs;
|
||||
|
||||
// C = Hl'Hl
|
||||
|
||||
// Cinv = inv(Hl'Hl)
|
||||
// Matrix3 Cinv;
|
||||
|
||||
// E = Hx'Hl
|
||||
|
||||
// w = Hl'b
|
||||
|
||||
};
|
||||
|
||||
int SmartProjectionFactorState::lastID = 0;
|
||||
|
||||
/**
|
||||
* The calibration is known here.
|
||||
|
|
@ -47,7 +96,6 @@ namespace gtsam {
|
|||
boost::shared_ptr<CALIBRATION> K_; ///< shared pointer to calibration object
|
||||
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame
|
||||
boost::shared_ptr<SmartProjectionFactorState> state_;
|
||||
mutable Point3 point_;
|
||||
|
||||
// verbosity handling for Cheirality Exceptions
|
||||
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
|
||||
|
|
@ -64,6 +112,9 @@ namespace gtsam {
|
|||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
/// shorthand for smart projection factor state variable
|
||||
typedef boost::shared_ptr<SmartProjectionFactorState> SmartFactorStatePtr;
|
||||
|
||||
/// Default constructor
|
||||
SmartProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {}
|
||||
|
||||
|
|
@ -79,7 +130,7 @@ namespace gtsam {
|
|||
SmartProjectionFactor(const std::vector<Point2> measured, const SharedNoiseModel& model,
|
||||
std::vector<Key> poseKeys, const boost::shared_ptr<CALIBRATION>& K,
|
||||
boost::optional<POSE> body_P_sensor = boost::none,
|
||||
boost::shared_ptr<SmartProjectionFactorState> state = boost::shared_ptr<SmartProjectionFactorState>()) :
|
||||
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
|
||||
measured_(measured), noise_(model), K_(K), body_P_sensor_(body_P_sensor),
|
||||
state_(state), throwCheirality_(false), verboseCheirality_(false) {
|
||||
keys_.assign(poseKeys.begin(), poseKeys.end());
|
||||
|
|
@ -100,9 +151,11 @@ namespace gtsam {
|
|||
std::vector<Key> poseKeys, const boost::shared_ptr<CALIBRATION>& K,
|
||||
bool throwCheirality, bool verboseCheirality,
|
||||
boost::optional<POSE> body_P_sensor = boost::none,
|
||||
boost::shared_ptr<SmartProjectionFactorState> state = boost::shared_ptr<SmartProjectionFactorState>()) :
|
||||
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
|
||||
measured_(measured), noise_(model), K_(K), body_P_sensor_(body_P_sensor),
|
||||
state_(state), throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {}
|
||||
state_(state), throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor with exception-handling flags
|
||||
|
|
@ -111,20 +164,15 @@ namespace gtsam {
|
|||
*/
|
||||
SmartProjectionFactor(const SharedNoiseModel& model, const boost::shared_ptr<CALIBRATION>& K,
|
||||
boost::optional<POSE> body_P_sensor = boost::none,
|
||||
boost::shared_ptr<SmartProjectionFactorState> state = boost::shared_ptr<SmartProjectionFactorState>()) :
|
||||
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionFactorState())) :
|
||||
noise_(model), K_(K), body_P_sensor_(body_P_sensor), state_(state) {
|
||||
}
|
||||
|
||||
/** Virtual destructor */
|
||||
virtual ~SmartProjectionFactor() {}
|
||||
|
||||
/// @return a deep copy of this factor
|
||||
// virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
||||
// return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
||||
// gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
|
||||
|
||||
/**
|
||||
* add
|
||||
* add a new measurement and pose key
|
||||
* @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
|
||||
* @param poseKey is the index corresponding to the camera observing the same landmark
|
||||
*/
|
||||
|
|
@ -175,8 +223,10 @@ namespace gtsam {
|
|||
virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
|
||||
|
||||
bool blockwise = false;
|
||||
bool degenerate = false;
|
||||
double retriangulationThreshold = 1e-9;
|
||||
|
||||
int dim_landmark = 3;
|
||||
bool retriangulate = true;
|
||||
|
||||
unsigned int numKeys = keys_.size();
|
||||
std::vector<Index> js;
|
||||
|
|
@ -185,34 +235,69 @@ namespace gtsam {
|
|||
double f=0;
|
||||
|
||||
// Collect all poses (Cameras)
|
||||
bool valuesEqualRetriangulation = true;
|
||||
std::vector<Pose3> cameraPoses;
|
||||
int poseCount = 0;
|
||||
BOOST_FOREACH(const Key& k, keys_) {
|
||||
Pose3 cameraPose;
|
||||
|
||||
if(body_P_sensor_)
|
||||
cameraPoses.push_back(values.at<Pose3>(k).compose(*body_P_sensor_));
|
||||
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
|
||||
else
|
||||
cameraPoses.push_back(values.at<Pose3>(k));
|
||||
cameraPose = values.at<Pose3>(k);
|
||||
|
||||
if (!state_->cameraPosesTriangulation.empty()) {
|
||||
if (!cameraPose.equals(state_->cameraPosesTriangulation[poseCount], retriangulationThreshold)) {
|
||||
valuesEqualRetriangulation = false;
|
||||
}
|
||||
} else {
|
||||
valuesEqualRetriangulation = false;
|
||||
}
|
||||
|
||||
cameraPoses.push_back(cameraPose);
|
||||
poseCount++;
|
||||
}
|
||||
|
||||
// We triangulate the 3D position of the landmark
|
||||
try {
|
||||
point_ = triangulatePoint3(cameraPoses, measured_, *K_);
|
||||
} catch( TriangulationUnderconstrainedException& e) {
|
||||
// point is triangulated at infinity
|
||||
//std::cout << e.what() << std::end;
|
||||
degenerate = true;
|
||||
dim_landmark = 2;
|
||||
} catch( TriangulationCheiralityException& e) {
|
||||
if (valuesEqualRetriangulation) {
|
||||
retriangulate = false;
|
||||
} else {
|
||||
state_->cameraPosesTriangulation = cameraPoses;
|
||||
}
|
||||
|
||||
if (retriangulate) {
|
||||
// We triangulate the 3D position of the landmark
|
||||
try {
|
||||
state_->point = triangulatePoint3(cameraPoses, measured_, *K_);
|
||||
state_->degenerate = false;
|
||||
state_->cheiralityException = false;
|
||||
} catch( TriangulationUnderconstrainedException& e) {
|
||||
// point is triangulated at infinity
|
||||
//std::cout << e.what() << std::end;
|
||||
state_->degenerate = true;
|
||||
state_->cheiralityException = false;
|
||||
dim_landmark = 2;
|
||||
} catch( TriangulationCheiralityException& e) {
|
||||
// point is behind one of the cameras, turn factor off by setting everything to 0
|
||||
//std::cout << e.what() << std::end;
|
||||
BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6);
|
||||
BOOST_FOREACH(Vector& v, gs) v = zero(6);
|
||||
//return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f));
|
||||
//state_->cheiralityException = true; // TODO: Debug condition, uncomment when fixed
|
||||
//return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); // TODO: Debug condition, uncomment when fixed
|
||||
// TODO: this is a debug condition, should be removed the comment
|
||||
}
|
||||
}
|
||||
|
||||
degenerate = true; // TODO: this is a debug condition, should be removed
|
||||
state_->degenerate = true; // TODO: this is a debug condition, should be removed
|
||||
dim_landmark = 2; // TODO: this is a debug condition, should be removed the comment
|
||||
|
||||
if (!retriangulate && state_->cheiralityException) {
|
||||
BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6);
|
||||
BOOST_FOREACH(Vector& v, gs) v = zero(6);
|
||||
return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f));
|
||||
}
|
||||
if (!retriangulate && state_->degenerate) {
|
||||
dim_landmark = 2;
|
||||
}
|
||||
|
||||
if (blockwise){
|
||||
// ==========================================================================================================
|
||||
std::vector<Matrix> Hx(numKeys);
|
||||
|
|
@ -222,7 +307,7 @@ namespace gtsam {
|
|||
for(size_t i = 0; i < measured_.size(); i++) {
|
||||
Pose3 pose = cameraPoses.at(i);
|
||||
PinholeCamera<CALIBRATION> camera(pose, *K_);
|
||||
b.at(i) = - ( camera.project(point_,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector();
|
||||
b.at(i) = - ( camera.project(state_->point,Hx.at(i),Hl.at(i)) - measured_.at(i) ).vector();
|
||||
noise_-> WhitenSystem(Hx.at(i), Hl.at(i), b.at(i));
|
||||
f += b.at(i).squaredNorm();
|
||||
}
|
||||
|
|
@ -273,16 +358,16 @@ namespace gtsam {
|
|||
Matrix Hl2 = zeros(2 * numKeys, dim_landmark);
|
||||
Vector b2 = zero(2 * numKeys);
|
||||
|
||||
if(degenerate){
|
||||
if(state_->degenerate){
|
||||
for(size_t i = 0; i < measured_.size(); i++) {
|
||||
Pose3 pose = cameraPoses.at(i);
|
||||
PinholeCamera<CALIBRATION> camera(pose, *K_);
|
||||
if(i==0){ // first pose
|
||||
point_ = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity
|
||||
// std::cout << "point_ " << point_<< std::endl;
|
||||
state_->point = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity
|
||||
// std::cout << "point_ " << state_->point<< std::endl;
|
||||
}
|
||||
Matrix Hxi, Hli;
|
||||
Vector bi = -( camera.projectPointAtInfinity(point_,Hxi,Hli) - measured_.at(i) ).vector();
|
||||
Vector bi = -( camera.projectPointAtInfinity(state_->point,Hxi,Hli) - measured_.at(i) ).vector();
|
||||
// std::cout << "Hxi \n" << Hxi<< std::endl;
|
||||
// std::cout << "Hli \n" << Hli<< std::endl;
|
||||
|
||||
|
|
@ -298,12 +383,18 @@ namespace gtsam {
|
|||
// std::cout << "Hl2 \n" << Hl2<< std::endl;
|
||||
}
|
||||
else{
|
||||
std::cout << "non degenerate " << point_<< std::endl;
|
||||
for(size_t i = 0; i < measured_.size(); i++) {
|
||||
Pose3 pose = cameraPoses.at(i);
|
||||
PinholeCamera<CALIBRATION> camera(pose, *K_);
|
||||
Matrix Hxi, Hli;
|
||||
Vector bi = -( camera.project(point_,Hxi,Hli) - measured_.at(i) ).vector();
|
||||
|
||||
Vector bi;
|
||||
try {
|
||||
bi = -( camera.project(state_->point,Hxi,Hli) - measured_.at(i) ).vector();
|
||||
} catch ( CheiralityException& e) {
|
||||
std::cout << "Cheirality exception " << state_->ID << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
noise_-> WhitenSystem(Hxi, Hli, bi);
|
||||
f += bi.squaredNorm();
|
||||
|
|
@ -315,15 +406,15 @@ namespace gtsam {
|
|||
}
|
||||
}
|
||||
|
||||
std::cout << "dim_landmark " << dim_landmark << std::endl;
|
||||
|
||||
// Shur complement trick
|
||||
Matrix H(6 * numKeys, 6 * numKeys);
|
||||
std::cout << "Hl2.transpose() * Hl2 \n" << Hl2.transpose() * Hl2 << std::endl;
|
||||
Matrix C2 = (Hl2.transpose() * Hl2).inverse();
|
||||
std::cout << "C2 \n" << C2.size() << std::endl;
|
||||
H = Hx2.transpose() * (Hx2 - (Hl2 * (C2 * (Hl2.transpose() * Hx2))));
|
||||
Matrix C2;
|
||||
Vector gs_vector;
|
||||
|
||||
Vector gs_vector = Hx2.transpose() * (b2 - (Hl2 * (C2 * (Hl2.transpose() * b2))));
|
||||
C2.noalias() = (Hl2.transpose() * Hl2).inverse();
|
||||
H.noalias() = Hx2.transpose() * (Hx2 - (Hl2 * (C2 * (Hl2.transpose() * Hx2))));
|
||||
gs_vector.noalias() = Hx2.transpose() * (b2 - (Hl2 * (C2 * (Hl2.transpose() * b2))));
|
||||
|
||||
// Populate Gs and gs
|
||||
int GsCount2 = 0;
|
||||
|
|
@ -337,10 +428,14 @@ namespace gtsam {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// ==========================================================================================================
|
||||
state_->calculatedHessian = true;
|
||||
state_->Gs = Gs;
|
||||
state_->gs = gs;
|
||||
state_->f = f;
|
||||
|
||||
return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f));
|
||||
}
|
||||
|
||||
|
|
@ -351,46 +446,74 @@ namespace gtsam {
|
|||
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
|
||||
*/
|
||||
virtual double error(const Values& values) const {
|
||||
double retriangulationThreshold = 1e-9;
|
||||
if (this->active(values)) {
|
||||
double overallError=0;
|
||||
bool degenerate = false;
|
||||
|
||||
std::cout << "evaluating error in smart factor " << std::endl;
|
||||
bool retriangulate = true;
|
||||
|
||||
// Collect all poses (Cameras)
|
||||
bool valuesEqualRetriangulation = true;
|
||||
std::vector<Pose3> cameraPoses;
|
||||
|
||||
int poseCount = 0;
|
||||
BOOST_FOREACH(const Key& k, keys_) {
|
||||
Pose3 cameraPose;
|
||||
|
||||
if(body_P_sensor_)
|
||||
cameraPoses.push_back(values.at<Pose3>(k).compose(*body_P_sensor_));
|
||||
cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);
|
||||
else
|
||||
cameraPoses.push_back(values.at<Pose3>(k));
|
||||
cameraPose = values.at<Pose3>(k);
|
||||
|
||||
if (!state_->cameraPosesTriangulation.empty()) {
|
||||
if (!cameraPose.equals(state_->cameraPosesTriangulation[poseCount], retriangulationThreshold)) {
|
||||
valuesEqualRetriangulation = false;
|
||||
}
|
||||
} else {
|
||||
valuesEqualRetriangulation = false;
|
||||
}
|
||||
|
||||
cameraPoses.push_back(cameraPose);
|
||||
poseCount++;
|
||||
}
|
||||
|
||||
if (valuesEqualRetriangulation) {
|
||||
retriangulate = false;
|
||||
} else {
|
||||
state_->cameraPosesTriangulation = cameraPoses;
|
||||
}
|
||||
|
||||
// We triangulate the 3D position of the landmark
|
||||
try {
|
||||
point_ = triangulatePoint3(cameraPoses, measured_, *K_);
|
||||
} catch( TriangulationCheiralityException& e) {
|
||||
// std::cout << "TriangulationCheiralityException " << std::endl;
|
||||
if (retriangulate) {
|
||||
try {
|
||||
state_->point = triangulatePoint3(cameraPoses, measured_, *K_);
|
||||
state_->degenerate = false;
|
||||
state_->cheiralityException = false;
|
||||
} catch( TriangulationCheiralityException& e) {
|
||||
// std::cout << "TriangulationCheiralityException " << std::endl;
|
||||
// point is behind one of the cameras, turn factor off by setting everything to 0
|
||||
//std::cout << e.what() << std::end;
|
||||
// return 0.0; // TODO: this is a debug condition, should be removed the comment
|
||||
} catch( TriangulationUnderconstrainedException& e) {
|
||||
// point is triangulated at infinity
|
||||
//std::cout << e.what() << std::endl;
|
||||
degenerate = true;
|
||||
//state_->cheiralityException = true; // TODO: Debug condition, remove comment
|
||||
//return 0.0; // TODO: this is a debug condition, should be removed the comment
|
||||
} catch( TriangulationUnderconstrainedException& e) {
|
||||
// point is triangulated at infinity
|
||||
//std::cout << e.what() << std::endl;
|
||||
state_->degenerate = true;
|
||||
state_->cheiralityException = false;
|
||||
}
|
||||
}
|
||||
state_->degenerate = true; // TODO: this is a debug condition, should be removed
|
||||
|
||||
if (!retriangulate && state_->cheiralityException) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
degenerate = true; // TODO: this is a debug condition, should be removed
|
||||
|
||||
if(degenerate){
|
||||
if(state_->degenerate){
|
||||
for(size_t i = 0; i < measured_.size(); i++) {
|
||||
Pose3 pose = cameraPoses.at(i);
|
||||
PinholeCamera<CALIBRATION> camera(pose, *K_);
|
||||
if(i==0){ // first pose
|
||||
point_ = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity
|
||||
state_->point = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity
|
||||
}
|
||||
Point2 reprojectionError(camera.projectPointAtInfinity(point_) - measured_.at(i));
|
||||
Point2 reprojectionError(camera.projectPointAtInfinity(state_->point) - measured_.at(i));
|
||||
overallError += noise_->distance( reprojectionError.vector() );
|
||||
}
|
||||
return overallError;
|
||||
|
|
@ -400,8 +523,13 @@ namespace gtsam {
|
|||
Pose3 pose = cameraPoses.at(i);
|
||||
PinholeCamera<CALIBRATION> camera(pose, *K_);
|
||||
|
||||
Point2 reprojectionError(camera.project(point_) - measured_.at(i));
|
||||
overallError += noise_->distance( reprojectionError.vector() );
|
||||
try {
|
||||
Point2 reprojectionError(camera.project(state_->point) - measured_.at(i));
|
||||
overallError += noise_->distance( reprojectionError.vector() );
|
||||
} catch ( CheiralityException& e) {
|
||||
std::cout << "Cheirality exception " << state_->ID << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
return overallError;
|
||||
}
|
||||
|
|
@ -422,7 +550,7 @@ namespace gtsam {
|
|||
|
||||
/** return the landmark */
|
||||
boost::optional<Point3> point() const {
|
||||
return point_;
|
||||
return state_->point;
|
||||
}
|
||||
|
||||
/** return the calibration object */
|
||||
|
|
@ -452,29 +580,4 @@ namespace gtsam {
|
|||
|
||||
};
|
||||
|
||||
/**
|
||||
* Structure for storing some state memory, used to speed up optimization
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class SmartProjectionFactorState {
|
||||
public:
|
||||
// Landmark key
|
||||
Key landmarkKey_;
|
||||
|
||||
// Set of involved pose keys
|
||||
std::list<Key> poseKeys_;
|
||||
|
||||
// Linearization point
|
||||
Values values_;
|
||||
|
||||
// inv(C)
|
||||
Matrix3 Cinv_;
|
||||
|
||||
// E
|
||||
// W
|
||||
// Hessian
|
||||
Matrix H_;
|
||||
|
||||
};
|
||||
|
||||
} // \ namespace gtsam
|
||||
|
|
|
|||
Loading…
Reference in New Issue