function3 add graph measurement and initial estimate
parent
b45e81725b
commit
a8bf2a4da1
|
@ -1,29 +1,46 @@
|
|||
function [visiblePoints, visiblePointsCylinderIdx] = cylinderSampleProjection(K, cameraPose, imageSize, cylinders)
|
||||
% Project sampled points on cylinder to camera frame
|
||||
% Authors: Zhaoyang Lv
|
||||
function [visiblePoints] = cylinderSampleProjection(camera, imageSize, cylinders)
|
||||
|
||||
% Input:
|
||||
% Output:
|
||||
% visiblePoints: data{k} 3D Point in overal point clouds with index k
|
||||
% Z{k} 2D measurements in overal point clouds with index k
|
||||
% index {i}{j}
|
||||
% i: the cylinder index;
|
||||
% j: the point index on the cylinder;
|
||||
%
|
||||
% @Description: Project sampled points on cylinder to camera frame
|
||||
% @Authors: Zhaoyang Lv
|
||||
|
||||
import gtsam.*
|
||||
|
||||
cylinder_num = size(cylinders, 1);
|
||||
%% memory allocation
|
||||
cylinderNum = length(cylinders);
|
||||
visiblePoints.index = cell(cylinderNum);
|
||||
|
||||
%camera = SimpleCamera(cameraPose, K);
|
||||
camera = SimpleCamera.Lookat(cameraPose.translation(), cylinders{10}.centroid, Point3([0,0,1]'), K);
|
||||
pointCloudNum = 0;
|
||||
for i = 1:cylinderNum
|
||||
pointCloudNum = pointCloudNum + length(cylinders{i}.Points);
|
||||
visiblePoints.index{i} = cell(pointCloudNum);
|
||||
end
|
||||
visiblePoints.data = cell(pointCloudNum);
|
||||
|
||||
visiblePoints = {};
|
||||
visiblePointsCylinderIdx = [];
|
||||
%% check visiblity of points on each cylinder
|
||||
pointCloudIndex = 0;
|
||||
for i = 1:cylinderNum
|
||||
|
||||
for i = 1:cylinder_num
|
||||
|
||||
point_num = size( cylinders{i}.Points, 1);
|
||||
pointNum = length(cylinders{i}.Points);
|
||||
|
||||
% to check point visibility
|
||||
for j = 1:point_num
|
||||
for j = 1:pointNum
|
||||
|
||||
pointCloudIndex = pointCloudIndex + 1;
|
||||
|
||||
sampledPoint3 = cylinders{i}.Points{j};
|
||||
measurements2d = camera.project(sampledPoint3);
|
||||
Z2d = camera.project(sampledPoint3);
|
||||
|
||||
% ignore points not visible in the scene
|
||||
if measurements2d.x < 0 || measurements2d.x >= imageSize.x ...
|
||||
|| measurements2d.y < 0 || measurements2d.y >= imageSize.y
|
||||
if Z2d.x < 0 || Z2d.x >= imageSize.x ...
|
||||
|| Z2d.y < 0 || Z2d.y >= imageSize.y
|
||||
continue;
|
||||
end
|
||||
|
||||
|
@ -31,7 +48,7 @@ function [visiblePoints, visiblePointsCylinderIdx] = cylinderSampleProjection(K,
|
|||
% use a simple math hack to check occlusion:
|
||||
% 1. All points in front of cylinders' surfaces are visible
|
||||
% 2. For points behind the cylinders' surfaces, the cylinder
|
||||
for k = 1:cylinder_num
|
||||
for k = 1:cylinderNum
|
||||
|
||||
rayCameraToPoint = cameraPose.translation().between(sampledPoint3).vector();
|
||||
rayCameraToCylinder = cameraPose.translation().between(cylinders{i}.centroid).vector();
|
||||
|
@ -40,8 +57,9 @@ function [visiblePoints, visiblePointsCylinderIdx] = cylinderSampleProjection(K,
|
|||
% Condition 1: all points in front of the cylinders'
|
||||
% surfaces are visible
|
||||
if dot(rayCylinderToPoint, rayCameraToCylinder) < 0
|
||||
visiblePoints{end+1} = sampledPoint3;
|
||||
visiblePointsCylinderIdx = [visiblePointsCylinderIdx, i];
|
||||
visiblePoints.data{pointCloudIndex} = sampledPoint3;
|
||||
visiblePoints.Z{pointCloudIndex} = Z2d;
|
||||
visiblePoints.index{i}{j} = pointCloudIndex;
|
||||
continue;
|
||||
end
|
||||
|
||||
|
@ -51,8 +69,9 @@ function [visiblePoints, visiblePointsCylinderIdx] = cylinderSampleProjection(K,
|
|||
rayCylinderToProjected = norm(projectedRay) / norm(rayCameraToPoint) * rayCameraToPoint;
|
||||
if rayCylinderToProjected(1) > cylinders{i}.radius && ...
|
||||
rayCylinderToProjected(2) > cylinders{i}.radius
|
||||
visiblePoints{end+1} = sampledPoint3;
|
||||
visiblePointsCylinderIdx = [visiblePointsCylinderIdx, i];
|
||||
visiblePoints.data{pointCloudIndex} = sampledPoints3;
|
||||
visiblePoints.Z{pointCloudIndex} = Z2d;
|
||||
visiblePoints.index{i}{j} = pointCloudIndex;
|
||||
end
|
||||
end
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
function pts2dTracksmon = points2DTrackMonocular(K, cameraPoses, imageSize, cylinders)
|
||||
function pts2dTracksMono = points2DTrackMonocular(K, cameraPoses, imageSize, cylinders)
|
||||
% Assess how accurately we can reconstruct points from a particular monocular camera setup.
|
||||
% After creation of the factor graph for each track, linearize it around ground truth.
|
||||
% There is no optimization
|
||||
|
@ -9,32 +9,59 @@ import gtsam.*
|
|||
%% create graph
|
||||
graph = NonlinearFactorGraph;
|
||||
|
||||
%% add a constraint on the starting pose
|
||||
pointNoiseSigma = 0.1;
|
||||
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
|
||||
|
||||
%% add a constraint on the starting pose
|
||||
posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
|
||||
firstPose = cameraPoses{1};
|
||||
graph.add(PriorFactorPose3(symbol('x', l), firstPose, posePriorNoise));
|
||||
|
||||
cameraPosesNum = size(cameraPoses, 1);
|
||||
cameraPosesNum = length(cameraPoses);
|
||||
|
||||
%% add measurements
|
||||
%% add measurements and initial camera & points values
|
||||
pointsNum = 0;
|
||||
cylinderNum = length(cylinders);
|
||||
for i = 1:cylinderNum
|
||||
pointsNum = pointsNum + length(cylinders{i}.Points);
|
||||
end
|
||||
|
||||
measurementNoise = noiseModel.Isotropic.Sigma(2, measurementNoiseSigma);
|
||||
|
||||
pts3d = {};
|
||||
initialEstimate = Values;
|
||||
for i = 1:cameraPosesNum
|
||||
[visiblePoints3, visiblePointsCylinderIdx] = cylinderSampleProjection(K, cameraPoses{i}, imageSize, cylinders);
|
||||
camera = SimpleCamera(K, cameraPoses{i});
|
||||
|
||||
pointsNum = size(visiblePoints, 1);
|
||||
pts3d.pts{i} = cylinderSampleProjection(camera, imageSize, cylinders);
|
||||
pts3d.camera{i} = camera;
|
||||
|
||||
%% not finished
|
||||
%for j = 1:pointsNum
|
||||
% graph.add();
|
||||
%end
|
||||
for j = 1:length(pts3d.pts{i}.Z)
|
||||
graph.add(GenericProjectionFactorCal3_S2(pts3d.pts{i}.Z{j}, ...
|
||||
measurementNoise, symbol('x', i), symbol('p', j), camera.K) );
|
||||
|
||||
point_j = pts3d.pts{i}.data{j}.retract(0.1*randn(3,1));
|
||||
initialEstimate.insert(symbol('p', j), point_j);
|
||||
end
|
||||
|
||||
pose_i = camera.pose.retract(0.1*randn(6,1));
|
||||
initialEstimate.insert(symbole('x', i), pose_i);
|
||||
|
||||
end
|
||||
|
||||
%% Print the graph
|
||||
graph.print(sprintf('\nFactor graph:\n'));
|
||||
|
||||
marginals = Marginals(graph, initialEstimate);
|
||||
|
||||
% should use all the points num to replace the num 100
|
||||
for i = 1:100
|
||||
marginals.marginalCovariance(symbol('p',i));
|
||||
%% get all the 2d points track information
|
||||
ptIdx = 0;
|
||||
for i = 1:pointsNum
|
||||
if isempty(pts3d.pts{i})
|
||||
continue;
|
||||
end
|
||||
%pts2dTrackMono.pts2d = pts3d.pts{i}
|
||||
pts2dTracksMono.cov{ptIdx} = marginals.marginalCovariance(symbol('p',i));
|
||||
end
|
||||
|
||||
end
|
||||
|
|
|
@ -2,47 +2,49 @@ clear all;
|
|||
clc;
|
||||
import gtsam.*
|
||||
|
||||
%% generate a set of cylinders and Samples
|
||||
fieldSize = Point2([100, 100]');
|
||||
cylinder_num = 10;
|
||||
cylinders = cell(cylinder_num, 1);
|
||||
|
||||
% generate a set of cylinders
|
||||
fieldSize = Point2([100, 100]');
|
||||
|
||||
% random generate cylinders on the fields
|
||||
for i = 1:cylinder_num
|
||||
for i = 1:cylinderNum
|
||||
baseCentroid = Point2([fieldSize.x * rand, fieldSize.y * rand]');
|
||||
cylinders{i,1} = cylinderSampling(baseCentroid, 1, 5, 1);
|
||||
end
|
||||
|
||||
% plot all the cylinders and sampled points
|
||||
%% plot all the cylinders and sampled points
|
||||
% now is plotting on a 100 * 100 field
|
||||
figID = 1;
|
||||
figure(figID);
|
||||
plotCylinderSamples(cylinders, fieldSize, figID);
|
||||
|
||||
% visibility validation
|
||||
|
||||
% generate camera trajectories
|
||||
%% generate camera trajectories
|
||||
K = Cal3_S2(525,525,0,320,240);
|
||||
imageSize = Point2([640, 480]');
|
||||
poseNum = 10;
|
||||
cameraPoses = cell(poseNum, 1);
|
||||
cameraPoses{1} = Pose3();
|
||||
cameras = cell(poseNum, 1);
|
||||
for i = 2:poseNum
|
||||
incRot = Rot3.RzRyRx(0,0,pi/4);
|
||||
trans = Point3();
|
||||
% To ensure there are landmarks in view, look at one randomly chosen cylinder
|
||||
% each time.
|
||||
for i = 1:poseNum
|
||||
camera = SimpleCamera.Lookat(trans, cylinders{round(cylinderNum*rand)}.centroid, ...
|
||||
Point3([0,0,1]'), K);
|
||||
|
||||
incT = Point3(5*rand, 5*rand, 5*rand);
|
||||
cameraPoses{i} = cameraPoses{i-1}.compose(Pose3(incRot, incT));
|
||||
trans = trans.compose(incT);
|
||||
end
|
||||
|
||||
[visiblePoints3, ~] = cylinderSampleProjection(K, cameraPoses{1}, imageSize, cylinders);
|
||||
%% visibility validation
|
||||
visiblePoints3 = cylinderSampleProjection(camera, imageSize, cylinders);
|
||||
|
||||
plotPose3(cameraPoses{1}, 5 )
|
||||
% plot all the projected points
|
||||
plotProjectedCylinderSamples(visiblePoints3, cameraPoses{1}, figID);
|
||||
%% plot all the projected points
|
||||
%plotProjectedCylinderSamples(visiblePoints3, cameraPoses{1}, figID);
|
||||
|
||||
%% setp up monocular camera and get measurements
|
||||
pts2dTracksMono = points2DTrackMonocular(K, cameraPoses, imageSize, cylinders);
|
||||
|
||||
%% set up stereo camera and get measurements
|
||||
%pts2dTracksStereo = points2DTrackStereo(K, cameraPoses, imageSize, cylinders);
|
||||
|
||||
|
||||
|
|
|
@ -1,41 +0,0 @@
|
|||
function [] = cylinderSampleProjection(K, cameraPose, imageSize, cylinders)
|
||||
% Project sampled points on cylinder to camera frame
|
||||
% Authors: Zhaoyang Lv
|
||||
|
||||
cylinder_num = size(cylinders, 1);
|
||||
|
||||
camera = SimpleCamera(cameraPose, K);
|
||||
|
||||
for i = 1:cylinder_num
|
||||
|
||||
point_num = size( cylinders{i}.Points, 1);
|
||||
|
||||
% to check point visibility
|
||||
for j = 1:point_num
|
||||
sampledPoint3 = cylinders{i}.Poinsts{j};
|
||||
measurements2d = camera.project(sampledPoint3);
|
||||
|
||||
% ignore points not visible in the scene
|
||||
if measurements2d.x < 0 || measurements.x >= imageSize.x ...
|
||||
|| measurements2d.y < 0 || measurements.y >= imageSize.y
|
||||
continue;
|
||||
end
|
||||
% ignore points occluded
|
||||
% use a simple math hack to check occlusion:
|
||||
% 1. All points in front of cylinders' surfaces are visible
|
||||
% 2. For points behind the cylinders' surfaces, the cylinder
|
||||
for k = 1:cylinder_num
|
||||
|
||||
rayCameraToPoint = sampledPoint3 - cameraPose.t;
|
||||
rayCameraToCylinder = cylinders{i} - cameraPose.t;
|
||||
|
||||
projectedRay = dot(rayCameraToPoint, rayCameraToCylinder);
|
||||
distCameraToCylinder = norm(rayCameraToCylinder);
|
||||
|
||||
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
end
|
|
@ -1,25 +0,0 @@
|
|||
function [cylinder] = cylinderSampling(baseCentroid, radius, height, density)
|
||||
%
|
||||
import gtsam.*
|
||||
% calculate the cylinder area
|
||||
area = 2 * pi * radius * height;
|
||||
|
||||
pointsNum = round(area * density);
|
||||
|
||||
points3 = cell(pointsNum, 1);
|
||||
|
||||
% sample the points
|
||||
for i = 1:pointsNum
|
||||
theta = 2 * pi * rand;
|
||||
x = radius * cos(theta) + baseCentroid.x;
|
||||
y = radius * sin(theta) + baseCentroid.y;
|
||||
z = height * rand;
|
||||
points3{i,1} = Point3([x,y,z]');
|
||||
end
|
||||
|
||||
cylinder.area = area;
|
||||
cylinder.radius = radius;
|
||||
cylinder.height = height;
|
||||
cylinder.Points = points3;
|
||||
cylinder.centroid = Point3(baseCentroid.x, baseCentroid.y, height/2);
|
||||
end
|
|
@ -1 +1,2 @@
|
|||
*.m~
|
||||
*.avi
|
||||
|
|
Loading…
Reference in New Issue