Merge pull request #2027 from borglab/city10000-py
Improvements to HybridCity10000 python scriptrelease/4.3a0
commit
a89b88c2a0
|
@ -145,6 +145,11 @@ string DiscreteValues::html(const KeyFormatter& keyFormatter,
|
|||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
void PrintDiscreteValues(const DiscreteValues& values, const std::string& s,
|
||||
const KeyFormatter& keyFormatter) {
|
||||
values.print(s, keyFormatter);
|
||||
}
|
||||
|
||||
string markdown(const DiscreteValues& values, const KeyFormatter& keyFormatter,
|
||||
const DiscreteValues::Names& names) {
|
||||
return values.markdown(keyFormatter, names);
|
||||
|
|
|
@ -188,6 +188,11 @@ inline std::vector<DiscreteValues> cartesianProduct(const DiscreteKeys& keys) {
|
|||
return DiscreteValues::CartesianProduct(keys);
|
||||
}
|
||||
|
||||
/// Free version of print for wrapper
|
||||
void GTSAM_EXPORT
|
||||
PrintDiscreteValues(const DiscreteValues& values, const std::string& s = "",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter);
|
||||
|
||||
/// Free version of markdown.
|
||||
std::string GTSAM_EXPORT
|
||||
markdown(const DiscreteValues& values,
|
||||
|
|
|
@ -22,6 +22,11 @@ class DiscreteKeys {
|
|||
// DiscreteValues is added in specializations/discrete.h as a std::map
|
||||
std::vector<gtsam::DiscreteValues> cartesianProduct(
|
||||
const gtsam::DiscreteKeys& keys);
|
||||
|
||||
void PrintDiscreteValues(
|
||||
const gtsam::DiscreteValues& values, const std::string& s = "",
|
||||
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter);
|
||||
|
||||
string markdown(
|
||||
const gtsam::DiscreteValues& values,
|
||||
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter);
|
||||
|
@ -472,9 +477,9 @@ class DiscreteSearchSolution {
|
|||
};
|
||||
|
||||
class DiscreteSearch {
|
||||
static DiscreteSearch FromFactorGraph(const gtsam::DiscreteFactorGraph& factorGraph,
|
||||
const gtsam::Ordering& ordering,
|
||||
bool buildJunctionTree = false);
|
||||
static gtsam::DiscreteSearch FromFactorGraph(
|
||||
const gtsam::DiscreteFactorGraph& factorGraph,
|
||||
const gtsam::Ordering& ordering, bool buildJunctionTree = false);
|
||||
|
||||
DiscreteSearch(const gtsam::DiscreteEliminationTree& etree);
|
||||
DiscreteSearch(const gtsam::DiscreteJunctionTree& junctionTree);
|
||||
|
|
|
@ -152,7 +152,11 @@ class HybridBayesNet {
|
|||
gtsam::HybridGaussianFactorGraph toFactorGraph(
|
||||
const gtsam::VectorValues& measurements) const;
|
||||
|
||||
gtsam::GaussianBayesNet choose(const gtsam::DiscreteValues& assignment) const;
|
||||
|
||||
gtsam::HybridValues optimize() const;
|
||||
gtsam::VectorValues optimize(const gtsam::DiscreteValues& assignment) const;
|
||||
|
||||
gtsam::HybridValues sample(const gtsam::HybridValues& given) const;
|
||||
gtsam::HybridValues sample() const;
|
||||
|
||||
|
|
|
@ -15,6 +15,7 @@ import time
|
|||
|
||||
import numpy as np
|
||||
from gtsam.symbol_shorthand import L, M, X
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
import gtsam
|
||||
from gtsam import (BetweenFactorPose2, HybridNonlinearFactor,
|
||||
|
@ -28,6 +29,30 @@ def parse_arguments():
|
|||
parser.add_argument("--data_file",
|
||||
help="The path to the City10000 data file",
|
||||
default="T1_city10000_04.txt")
|
||||
parser.add_argument(
|
||||
"--max_loop_count",
|
||||
"-l",
|
||||
type=int,
|
||||
default=10000,
|
||||
help="The maximum number of loops to run over the dataset")
|
||||
parser.add_argument(
|
||||
"--update_frequency",
|
||||
"-u",
|
||||
type=int,
|
||||
default=3,
|
||||
help="After how many steps to run the smoother update.")
|
||||
parser.add_argument(
|
||||
"--max_num_hypotheses",
|
||||
"-m",
|
||||
type=int,
|
||||
default=10,
|
||||
help="The maximum number of hypotheses to keep at any time.")
|
||||
parser.add_argument(
|
||||
"--plot_hypotheses",
|
||||
"-p",
|
||||
action="store_true",
|
||||
help="Plot all hypotheses. NOTE: This is exponential, use with caution."
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
|
@ -39,7 +64,7 @@ prior_noise_model = gtsam.noiseModel.Diagonal.Sigmas(
|
|||
np.asarray([0.0001, 0.0001, 0.0001]))
|
||||
|
||||
pose_noise_model = gtsam.noiseModel.Diagonal.Sigmas(
|
||||
np.asarray([1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0]))
|
||||
np.asarray([1.0 / 20.0, 1.0 / 20.0, 1.0 / 100.0]))
|
||||
pose_noise_constant = pose_noise_model.negLogConstant()
|
||||
|
||||
|
||||
|
@ -60,13 +85,16 @@ class City10000Dataset:
|
|||
"""Read a `line` from the dataset, separated by the `delimiter`."""
|
||||
return line.split(delimiter)
|
||||
|
||||
def parse_line(self, line: str) -> tuple[list[Pose2], tuple[int, int]]:
|
||||
def parse_line(self,
|
||||
line: str) -> tuple[list[Pose2], tuple[int, int], bool]:
|
||||
"""Parse line from file"""
|
||||
parts = self.read_line(line)
|
||||
|
||||
key_s = int(parts[1])
|
||||
key_t = int(parts[3])
|
||||
|
||||
is_ambiguous_loop = bool(int(parts[4]))
|
||||
|
||||
num_measurements = int(parts[5])
|
||||
pose_array = [Pose2()] * num_measurements
|
||||
|
||||
|
@ -76,7 +104,7 @@ class City10000Dataset:
|
|||
rad = float(parts[8 + 3 * i])
|
||||
pose_array[i] = Pose2(x, y, rad)
|
||||
|
||||
return pose_array, (key_s, key_t)
|
||||
return pose_array, (key_s, key_t), is_ambiguous_loop
|
||||
|
||||
def next(self):
|
||||
"""Read and parse the next line."""
|
||||
|
@ -84,7 +112,67 @@ class City10000Dataset:
|
|||
if line:
|
||||
return self.parse_line(line)
|
||||
else:
|
||||
return None, None
|
||||
return None, None, None
|
||||
|
||||
|
||||
def plot_all_results(ground_truth,
|
||||
all_results,
|
||||
iters=0,
|
||||
estimate_color=(0.1, 0.1, 0.9, 0.4),
|
||||
estimate_label="Hybrid Factor Graphs",
|
||||
text="",
|
||||
filename="city10000_results.svg"):
|
||||
"""Plot the City10000 estimates against the ground truth.
|
||||
|
||||
Args:
|
||||
ground_truth: The ground truth trajectory as xy values.
|
||||
all_results (List[Tuple(np.ndarray, str)]): All the estimates trajectory as xy values,
|
||||
as well as assginment strings.
|
||||
estimate_color (tuple, optional): The color to use for the graph of estimates.
|
||||
Defaults to (0.1, 0.1, 0.9, 0.4).
|
||||
estimate_label (str, optional): Label for the estimates, used in the legend.
|
||||
Defaults to "Hybrid Factor Graphs".
|
||||
"""
|
||||
if len(all_results) == 1:
|
||||
fig, axes = plt.subplots(1, 1)
|
||||
axes = [axes]
|
||||
else:
|
||||
fig, axes = plt.subplots(int(np.ceil(len(all_results) / 2)), 2)
|
||||
axes = axes.flatten()
|
||||
|
||||
for i, (estimates, s, prob) in enumerate(all_results):
|
||||
ax = axes[i]
|
||||
ax.axis('equal')
|
||||
ax.axis((-75.0, 100.0, -75.0, 75.0))
|
||||
|
||||
gt = ground_truth[:estimates.shape[0]]
|
||||
ax.plot(gt[:, 0],
|
||||
gt[:, 1],
|
||||
'--',
|
||||
linewidth=1,
|
||||
color=(0.1, 0.7, 0.1, 0.5),
|
||||
label="Ground Truth")
|
||||
ax.plot(estimates[:, 0],
|
||||
estimates[:, 1],
|
||||
'-',
|
||||
linewidth=1,
|
||||
color=estimate_color,
|
||||
label=estimate_label)
|
||||
# ax.legend()
|
||||
ax.set_title(f"P={prob:.3f}\n{s}", fontdict={'fontsize': 10})
|
||||
|
||||
fig.suptitle(f"After {iters} iterations")
|
||||
|
||||
num_chunks = int(np.ceil(len(text) / 90))
|
||||
text = "\n".join(text[i * 60:(i + 1) * 60] for i in range(num_chunks))
|
||||
fig.text(0.5,
|
||||
0.015,
|
||||
s=text,
|
||||
wrap=True,
|
||||
horizontalalignment='center',
|
||||
fontsize=12)
|
||||
|
||||
fig.savefig(filename, format="svg")
|
||||
|
||||
|
||||
class Experiment:
|
||||
|
@ -93,10 +181,11 @@ class Experiment:
|
|||
def __init__(self,
|
||||
filename: str,
|
||||
marginal_threshold: float = 0.9999,
|
||||
max_loop_count: int = 8000,
|
||||
max_loop_count: int = 150,
|
||||
update_frequency: int = 3,
|
||||
max_num_hypotheses: int = 10,
|
||||
relinearization_frequency: int = 10):
|
||||
relinearization_frequency: int = 10,
|
||||
plot_hypotheses: bool = False):
|
||||
self.dataset_ = City10000Dataset(filename)
|
||||
self.max_loop_count = max_loop_count
|
||||
self.update_frequency = update_frequency
|
||||
|
@ -108,6 +197,8 @@ class Experiment:
|
|||
self.all_factors_ = HybridNonlinearFactorGraph()
|
||||
self.initial_ = Values()
|
||||
|
||||
self.plot_hypotheses = plot_hypotheses
|
||||
|
||||
def hybrid_loop_closure_factor(self, loop_counter, key_s, key_t,
|
||||
measurement: Pose2):
|
||||
"""
|
||||
|
@ -147,7 +238,7 @@ class Experiment:
|
|||
after_update = time.time()
|
||||
return after_update - before_update
|
||||
|
||||
def reInitialize(self) -> float:
|
||||
def reinitialize(self) -> float:
|
||||
"""Re-linearize, solve ALL, and re-initialize smoother."""
|
||||
print(f"================= Re-Initialize: {self.all_factors_.size()}")
|
||||
before_update = time.time()
|
||||
|
@ -191,7 +282,7 @@ class Experiment:
|
|||
start_time = time.time()
|
||||
|
||||
while index < self.max_loop_count:
|
||||
pose_array, keys = self.dataset_.next()
|
||||
pose_array, keys, is_ambiguous_loop = self.dataset_.next()
|
||||
if pose_array is None:
|
||||
break
|
||||
key_s = keys[0]
|
||||
|
@ -200,6 +291,7 @@ class Experiment:
|
|||
num_measurements = len(pose_array)
|
||||
|
||||
# Take the first one as the initial estimate
|
||||
# odom_pose = pose_array[np.random.choice(num_measurements)]
|
||||
odom_pose = pose_array[0]
|
||||
if key_s == key_t - 1:
|
||||
# Odometry factor
|
||||
|
@ -224,8 +316,14 @@ class Experiment:
|
|||
self.initial_.atPose2(X(key_s)) * odom_pose)
|
||||
else:
|
||||
# Loop closure
|
||||
loop_factor = self.hybrid_loop_closure_factor(
|
||||
loop_count, key_s, key_t, odom_pose)
|
||||
if is_ambiguous_loop:
|
||||
loop_factor = self.hybrid_loop_closure_factor(
|
||||
loop_count, key_s, key_t, odom_pose)
|
||||
|
||||
else:
|
||||
loop_factor = BetweenFactorPose2(X(key_s), X(key_t),
|
||||
odom_pose,
|
||||
pose_noise_model)
|
||||
|
||||
# print loop closure event keys:
|
||||
print(f"Loop closure: {key_s} {key_t}")
|
||||
|
@ -240,7 +338,7 @@ class Experiment:
|
|||
update_count += 1
|
||||
|
||||
if update_count % self.relinearization_frequency == 0:
|
||||
self.reInitialize()
|
||||
self.reinitialize()
|
||||
|
||||
# Record timing for odometry edges only
|
||||
if key_s == key_t - 1:
|
||||
|
@ -271,8 +369,85 @@ class Experiment:
|
|||
total_time = end_time - start_time
|
||||
print(f"Total time: {total_time} seconds")
|
||||
|
||||
# self.save_results(result, key_t + 1, time_list)
|
||||
|
||||
if self.plot_hypotheses:
|
||||
# Get all the discrete values
|
||||
discrete_keys = gtsam.DiscreteKeys()
|
||||
for key in delta.discrete().keys():
|
||||
# TODO Get cardinality from DiscreteFactor
|
||||
discrete_keys.push_back((key, 2))
|
||||
print("plotting all hypotheses")
|
||||
self.plot_all_hypotheses(discrete_keys, key_t + 1, index)
|
||||
|
||||
def plot_all_hypotheses(self, discrete_keys, num_poses, num_iters=0):
|
||||
"""Plot all possible hypotheses."""
|
||||
|
||||
# Get ground truth
|
||||
gt = np.loadtxt(gtsam.findExampleDataFile("ISAM2_GT_city10000.txt"),
|
||||
delimiter=" ")
|
||||
|
||||
dkeys = gtsam.DiscreteKeys()
|
||||
for i in range(discrete_keys.size()):
|
||||
key, cardinality = discrete_keys.at(i)
|
||||
if key not in self.smoother_.fixedValues().keys():
|
||||
dkeys.push_back((key, cardinality))
|
||||
fixed_values_str = " ".join(
|
||||
f"{gtsam.DefaultKeyFormatter(k)}:{v}"
|
||||
for k, v in self.smoother_.fixedValues().items())
|
||||
|
||||
all_assignments = gtsam.cartesianProduct(dkeys)
|
||||
|
||||
all_results = []
|
||||
for assignment in all_assignments:
|
||||
result = gtsam.Values()
|
||||
gbn = self.smoother_.hybridBayesNet().choose(assignment)
|
||||
|
||||
# Check to see if the GBN has any nullptrs, if it does it is null overall
|
||||
is_invalid_gbn = False
|
||||
for i in range(gbn.size()):
|
||||
if gbn.at(i) is None:
|
||||
is_invalid_gbn = True
|
||||
break
|
||||
if is_invalid_gbn:
|
||||
continue
|
||||
|
||||
delta = self.smoother_.hybridBayesNet().optimize(assignment)
|
||||
result.insert_or_assign(self.initial_.retract(delta))
|
||||
|
||||
poses = np.zeros((num_poses, 3))
|
||||
for i in range(num_poses):
|
||||
pose = result.atPose2(X(i))
|
||||
poses[i] = np.asarray((pose.x(), pose.y(), pose.theta()))
|
||||
|
||||
assignment_string = " ".join([
|
||||
f"{gtsam.DefaultKeyFormatter(k)}={v}"
|
||||
for k, v in assignment.items()
|
||||
])
|
||||
|
||||
conditional = self.smoother_.hybridBayesNet().at(
|
||||
self.smoother_.hybridBayesNet().size() - 1).asDiscrete()
|
||||
discrete_values = self.smoother_.fixedValues()
|
||||
for k, v in assignment.items():
|
||||
discrete_values[k] = v
|
||||
|
||||
if conditional is None:
|
||||
probability = 1.0
|
||||
else:
|
||||
probability = conditional.evaluate(discrete_values)
|
||||
|
||||
all_results.append((poses, assignment_string, probability))
|
||||
|
||||
plot_all_results(gt,
|
||||
all_results,
|
||||
iters=num_iters,
|
||||
text=fixed_values_str,
|
||||
filename=f"city10000_results_{num_iters}.svg")
|
||||
|
||||
def save_results(self, result, final_key, time_list):
|
||||
"""Save results to file."""
|
||||
# Write results to file
|
||||
self.write_result(result, key_t + 1, "Hybrid_City10000.txt")
|
||||
self.write_result(result, final_key, "Hybrid_City10000.txt")
|
||||
|
||||
# Write timing info to file
|
||||
self.write_timing_info(time_list=time_list)
|
||||
|
@ -312,7 +487,11 @@ def main():
|
|||
"""Main runner"""
|
||||
args = parse_arguments()
|
||||
|
||||
experiment = Experiment(gtsam.findExampleDataFile(args.data_file))
|
||||
experiment = Experiment(gtsam.findExampleDataFile(args.data_file),
|
||||
max_loop_count=args.max_loop_count,
|
||||
update_frequency=args.update_frequency,
|
||||
max_num_hypotheses=args.max_num_hypotheses,
|
||||
plot_hypotheses=args.plot_hypotheses)
|
||||
experiment.run()
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue