test TwoStateModel with only differing covariances

release/4.3a0
Varun Agrawal 2024-09-14 14:17:40 -04:00
parent 5ceda1e157
commit a7f5173b88
1 changed files with 96 additions and 2 deletions

View File

@ -526,7 +526,7 @@ TEST(HybridGaussianFactor, TwoStateModel) {
/**
* Test a model P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
*
* P(f01|x1,x0,m1) has different means and different covariances.
* P(x1|x0,m1) has different means and different covariances.
*
* Converting to a factor graph gives us
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
@ -616,13 +616,107 @@ TEST(HybridGaussianFactor, TwoStateModel2) {
}
}
/* ************************************************************************* */
/**
* Test a model P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
*
* P(x1|x0,m1) has the same means but different covariances.
*
* Converting to a factor graph gives us
* ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
*
* If we only have a measurement on z0, then
* the P(m1) should be 0.5/0.5.
* Getting a measurement on z1 gives use more information.
*/
TEST(HybridGaussianFactor, TwoStateModel3) {
using namespace test_two_state_estimation;
double mu = 1.0;
double sigma0 = 0.5, sigma1 = 2.0;
auto hybridMotionModel = CreateHybridMotionModel(mu, mu, sigma0, sigma1);
// Start with no measurement on x1, only on x0
const Vector1 z0(0.5);
VectorValues given;
given.insert(Z(0), z0);
{
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Importance sampling run with 100k samples gives 50.095/49.905
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
// Since no measurement on x1, we a 50/50 probability
auto p_m = bn->at(2)->asDiscrete();
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 0}}), 1e-9);
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 1}}), 1e-9);
}
{
// Now we add a measurement z1 on x1
const Vector1 z1(4.0); // favors m==1
given.insert(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
// Check that ratio of Bayes net and factor graph for different modes is
// equal for several values of {x0,x1}.
for (VectorValues vv :
{VectorValues{{X(0), Vector1(0.0)}, {X(1), Vector1(1.0)}},
VectorValues{{X(0), Vector1(0.5)}, {X(1), Vector1(3.0)}}}) {
vv.insert(given); // add measurements for HBN
HybridValues hv0(vv, {{M(1), 0}}), hv1(vv, {{M(1), 1}});
EXPECT_DOUBLES_EQUAL(gfg.error(hv0) / hbn.error(hv0),
gfg.error(hv1) / hbn.error(hv1), 1e-9);
}
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "51.7762/48.2238");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
}
{
// Add a different measurement z1 on x1 that favors m==1
const Vector1 z1(7.0);
given.insert_or_assign(Z(1), z1);
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
// Values taken from an importance sampling run with 100k samples:
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
DiscreteConditional expected(m1, "49.0762/50.9238");
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.005));
}
}
/* ************************************************************************* */
/**
* Same model, P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1), but now with very informative
* measurements and vastly different motion model: either stand still or move
* far. This yields a very informative posterior.
*/
TEST(HybridGaussianFactor, TwoStateModel3) {
TEST(HybridGaussianFactor, TwoStateModel4) {
using namespace test_two_state_estimation;
double mu0 = 0.0, mu1 = 10.0;