Fix Vector_() to Vec() in gtsam/nonlinear
parent
dd3a98464a
commit
a71c258100
|
|
@ -75,8 +75,8 @@ namespace gtsam {
|
|||
Index j1, Index j2) {
|
||||
double e = u - z, e2 = e * e;
|
||||
double c = 2 * logSqrt2PI - log(p) + e2 * p;
|
||||
Vector g1 = Vector_(1, -e * p);
|
||||
Vector g2 = Vector_(1, 0.5 / p - 0.5 * e2);
|
||||
Vector g1 = (Vec(1) << -e * p);
|
||||
Vector g2 = (Vec(1) << 0.5 / p - 0.5 * e2);
|
||||
Matrix G11 = Matrix_(1, 1, p);
|
||||
Matrix G12 = Matrix_(1, 1, e);
|
||||
Matrix G22 = Matrix_(1, 1, 0.5 / (p * p));
|
||||
|
|
@ -137,7 +137,7 @@ namespace gtsam {
|
|||
* TODO: Where is this used? should disappear.
|
||||
*/
|
||||
virtual Vector unwhitenedError(const Values& x) const {
|
||||
return Vector_(1, std::sqrt(2 * error(x)));
|
||||
return (Vec(1) << std::sqrt(2 * error(x)));
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@ TEST( testLinearContainerFactor, generic_jacobian_factor ) {
|
|||
Matrix A2 = Matrix_(2,2,
|
||||
-0.0455167, -0.0443573,
|
||||
-0.0222154, -0.102489);
|
||||
Vector b = Vector_(2, 0.0277052,
|
||||
Vector b = (Vec(2) << 0.0277052,
|
||||
-0.0533393);
|
||||
|
||||
JacobianFactor expLinFactor(l1, A1, l2, A2, b, diag_model2);
|
||||
|
|
@ -70,7 +70,7 @@ TEST( testLinearContainerFactor, jacobian_factor_withlinpoints ) {
|
|||
Matrix A2 = Matrix_(2,2,
|
||||
-0.0455167, -0.0443573,
|
||||
-0.0222154, -0.102489);
|
||||
Vector b = Vector_(2, 0.0277052,
|
||||
Vector b = (Vec(2) << 0.0277052,
|
||||
-0.0533393);
|
||||
|
||||
JacobianFactor expLinFactor(l1, A1, l2, A2, b, diag_model2);
|
||||
|
|
@ -97,8 +97,8 @@ TEST( testLinearContainerFactor, jacobian_factor_withlinpoints ) {
|
|||
EXPECT(assert_equal(expLinPoint, *actFactor.linearizationPoint()));
|
||||
|
||||
// Check error evaluation
|
||||
Vector delta_l1 = Vector_(2, 1.0, 2.0);
|
||||
Vector delta_l2 = Vector_(2, 3.0, 4.0);
|
||||
Vector delta_l1 = (Vec(2) << 1.0, 2.0);
|
||||
Vector delta_l2 = (Vec(2) << 3.0, 4.0);
|
||||
|
||||
VectorValues delta = values.zeroVectors();
|
||||
delta.at(l1) = delta_l1;
|
||||
|
|
@ -130,9 +130,9 @@ TEST( testLinearContainerFactor, generic_hessian_factor ) {
|
|||
0.0, 5.0, 6.0,
|
||||
0.0, 0.0, 9.0);
|
||||
|
||||
Vector g1 = Vector_(1, -7.0);
|
||||
Vector g2 = Vector_(2, -8.0, -9.0);
|
||||
Vector g3 = Vector_(3, 1.0, 2.0, 3.0);
|
||||
Vector g1 = (Vec(1) << -7.0);
|
||||
Vector g2 = (Vec(2) << -8.0, -9.0);
|
||||
Vector g3 = (Vec(3) << 1.0, 2.0, 3.0);
|
||||
|
||||
double f = 10.0;
|
||||
|
||||
|
|
@ -166,13 +166,13 @@ TEST( testLinearContainerFactor, hessian_factor_withlinpoints ) {
|
|||
1.0, 2.0,
|
||||
3.0, 5.0,
|
||||
4.0, 6.0);
|
||||
Vector g1 = Vector_(3, 1.0, 2.0, 3.0);
|
||||
Vector g1 = (Vec(3) << 1.0, 2.0, 3.0);
|
||||
|
||||
Matrix G22 = Matrix_(2,2,
|
||||
0.5, 0.2,
|
||||
0.0, 0.6);
|
||||
|
||||
Vector g2 = Vector_(2, -8.0, -9.0);
|
||||
Vector g2 = (Vec(2) << -8.0, -9.0);
|
||||
|
||||
double f = 10.0;
|
||||
|
||||
|
|
@ -197,16 +197,16 @@ TEST( testLinearContainerFactor, hessian_factor_withlinpoints ) {
|
|||
EXPECT(assert_equal(expLinPoints, actLinPoint));
|
||||
|
||||
// Create delta
|
||||
Vector delta_l1 = Vector_(2, 1.0, 2.0);
|
||||
Vector delta_x1 = Vector_(3, 3.0, 4.0, 0.5);
|
||||
Vector delta_x2 = Vector_(3, 6.0, 7.0, 0.3);
|
||||
Vector delta_l1 = (Vec(2) << 1.0, 2.0);
|
||||
Vector delta_x1 = (Vec(3) << 3.0, 4.0, 0.5);
|
||||
Vector delta_x2 = (Vec(3) << 6.0, 7.0, 0.3);
|
||||
|
||||
// Check error calculation
|
||||
VectorValues delta = linearizationPoint.zeroVectors();
|
||||
delta.at(l1) = delta_l1;
|
||||
delta.at(x1) = delta_x1;
|
||||
delta.at(x2) = delta_x2;
|
||||
EXPECT(assert_equal(Vector_(5, 3.0, 4.0, 0.5, 1.0, 2.0), delta.vector(initFactor.keys())));
|
||||
EXPECT(assert_equal((Vec(5) << 3.0, 4.0, 0.5, 1.0, 2.0), delta.vector(initFactor.keys())));
|
||||
Values noisyValues = linearizationPoint.retract(delta);
|
||||
|
||||
double expError = initFactor.error(delta);
|
||||
|
|
@ -214,7 +214,7 @@ TEST( testLinearContainerFactor, hessian_factor_withlinpoints ) {
|
|||
EXPECT_DOUBLES_EQUAL(initFactor.error(linearizationPoint.zeroVectors()), actFactor.error(linearizationPoint), tol);
|
||||
|
||||
// Compute updated versions
|
||||
Vector dv = Vector_(5, 3.0, 4.0, 0.5, 1.0, 2.0);
|
||||
Vector dv = (Vec(5) << 3.0, 4.0, 0.5, 1.0, 2.0);
|
||||
Vector g(5); g << g1, g2;
|
||||
Vector g_prime = g - G.selfadjointView<Eigen::Upper>() * dv;
|
||||
|
||||
|
|
|
|||
|
|
@ -171,8 +171,8 @@ TEST(Values, expmap_a)
|
|||
config0.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
|
||||
VectorValues increment = pair_list_of
|
||||
(key1, Vector_(3, 1.0, 1.1, 1.2))
|
||||
(key2, Vector_(3, 1.3, 1.4, 1.5));
|
||||
(key1, (Vec(3) << 1.0, 1.1, 1.2))
|
||||
(key2, (Vec(3) << 1.3, 1.4, 1.5));
|
||||
|
||||
Values expected;
|
||||
expected.insert(key1, LieVector(3, 2.0, 3.1, 4.2));
|
||||
|
|
@ -242,8 +242,8 @@ TEST(Values, localCoordinates)
|
|||
valuesA.insert(key2, LieVector(3, 5.0, 6.0, 7.0));
|
||||
|
||||
VectorValues expDelta = pair_list_of
|
||||
(key1, Vector_(3, 0.1, 0.2, 0.3))
|
||||
(key2, Vector_(3, 0.4, 0.5, 0.6));
|
||||
(key1, (Vec(3) << 0.1, 0.2, 0.3))
|
||||
(key2, (Vec(3) << 0.4, 0.5, 0.6));
|
||||
|
||||
Values valuesB = valuesA.retract(expDelta);
|
||||
|
||||
|
|
@ -275,11 +275,11 @@ TEST(Values, extract_keys)
|
|||
TEST(Values, exists_)
|
||||
{
|
||||
Values config0;
|
||||
config0.insert(key1, LieVector(Vector_(1, 1.)));
|
||||
config0.insert(key2, LieVector(Vector_(1, 2.)));
|
||||
config0.insert(key1, LieVector((Vec(1) << 1.)));
|
||||
config0.insert(key2, LieVector((Vec(1) << 2.)));
|
||||
|
||||
boost::optional<const LieVector&> v = config0.exists<LieVector>(key1);
|
||||
CHECK(assert_equal(Vector_(1, 1.),*v));
|
||||
CHECK(assert_equal((Vec(1) << 1.),*v));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
Loading…
Reference in New Issue